These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38864207)
41. FeNiP nanoparticle/N,P dual-doped carbon composite as a trifunctional catalyst towards high-performance zinc-air batteries and overall water electrolysis. Chen W; Chang S; Yu H; Li W; Zhang H; Zhang Z Nanoscale; 2021 Oct; 13(40):17136-17146. PubMed ID: 34635897 [TBL] [Abstract][Full Text] [Related]
42. ZIF-Derived Co Cai Z; Yamada I; Yagi S ACS Appl Mater Interfaces; 2020 Feb; 12(5):5847-5856. PubMed ID: 31944103 [TBL] [Abstract][Full Text] [Related]
43. Boosting the activity and stability Deng X; Gu X; Deng Y; Jiang Z; Chen W; Dang D; Lin W; Chi B Nanoscale; 2022 Sep; 14(36):13192-13203. PubMed ID: 36047468 [TBL] [Abstract][Full Text] [Related]
44. A Self-Jet Vapor-Phase Growth of 3D FeNi@NCNT Clusters as Efficient Oxygen Electrocatalysts for Zinc-Air Batteries. Zheng X; Cao X; Zeng K; Yan J; Sun Z; Rümmeli MH; Yang R Small; 2021 Jan; 17(4):e2006183. PubMed ID: 33377268 [TBL] [Abstract][Full Text] [Related]
45. MOF-derived nitrogen-doped carbon-based trimetallic bifunctional catalysts for rechargeable zinc-air batteries. Zhu B; Li J; Hou Z; Meng C; Liu G; Du X; Guan Y Nanotechnology; 2022 Jul; 33(40):. PubMed ID: 35738190 [TBL] [Abstract][Full Text] [Related]
46. N-regulated three-dimensional turf-like carbon nanosheet loaded with FeCoNi nanoalloys as bifunctional electrocatalysts for durable zinc-air batteries. Xie W; Wang E; Sun Q; Ouyang Z; Tian T; Zhao J; Xiao Y; Lei S; Cheng B J Colloid Interface Sci; 2024 Nov; 673():80-91. PubMed ID: 38875800 [TBL] [Abstract][Full Text] [Related]
47. In Situ Symbiosis of Cerium Oxide Nanophase for Enhancing the Oxygen Electrocatalysis Performance of Single-Atom Fe─N─C Catalyst with Prolonged Stability for Zinc-Air Batteries. Luo H; Wang J; Zhang S; Sun B; Chen Z; Ren X; Luo Z; Han X; Hu W Small; 2024 Sep; 20(38):e2400357. PubMed ID: 38778724 [TBL] [Abstract][Full Text] [Related]
48. Nano-engineering of prussian blue analogues to core-shell architectures: Enhanced catalytic activity for zinc-air battery. Najam T; Wang M; Javed MS; Ibraheem S; Song Z; Ahmed MM; Rehman AU; Cai X; Shah SSA J Colloid Interface Sci; 2020 Oct; 578():89-95. PubMed ID: 32512399 [TBL] [Abstract][Full Text] [Related]
49. Simply prepared electrocatalyst of CoFe alloy and nitrogen-doped carbon with multi-dimensional structure and high performance for rechargeable zinc-air battery. He Y; Xi Z; Xu C Nanotechnology; 2022 Sep; 33(47):. PubMed ID: 35914475 [TBL] [Abstract][Full Text] [Related]
50. Hausmannite-Carbon Nanofiber Composite Electrocatalyst for High Areal-Discharge Energy Rechargeable Zinc-Air Battery. Lebechi AK; Gaolatlhe L; Mofokeng TP; Haruna AB; Ipadeola AK; Mwonga PV; Bankole OE; Ola O; Ozoemena KI ACS Omega; 2024 Sep; 9(37):39119-39133. PubMed ID: 39310172 [TBL] [Abstract][Full Text] [Related]
51. Tuning active sites for highly efficient bifunctional oxygen electrocatalysts of rechargeable zinc-air battery. Li X; Liu Y; Xu H; Zhou Y; Chen X; An Z; Chen Y; Chen P J Colloid Interface Sci; 2023 Jun; 640():549-557. PubMed ID: 36878072 [TBL] [Abstract][Full Text] [Related]
52. Construction of Co/FeCo@Fe(Co) Xiong Y; Jiang Z; Gong L; Tian X; Song C; Maiyalagan T; Jiang ZJ J Colloid Interface Sci; 2023 Nov; 649():36-48. PubMed ID: 37331108 [TBL] [Abstract][Full Text] [Related]
53. N-P covalent bond regulation of mesoporous carbon-based catalyst for lowered oxygen reduction overpotential and enhanced zinc-air battery performance. Ao K; Yue X; Zhang X; Zhao H; Liu J; Shi J; Daoud WA; Li H J Colloid Interface Sci; 2024 Oct; 672():107-116. PubMed ID: 38833730 [TBL] [Abstract][Full Text] [Related]
55. A 3d-4d-5d High Entropy Alloy as a Bifunctional Oxygen Catalyst for Robust Aqueous Zinc-Air Batteries. He R; Yang L; Zhang Y; Jiang D; Lee S; Horta S; Liang Z; Lu X; Ostovari Moghaddam A; Li J; Ibáñez M; Xu Y; Zhou Y; Cabot A Adv Mater; 2023 Nov; 35(46):e2303719. PubMed ID: 37487245 [TBL] [Abstract][Full Text] [Related]
56. FeNiCrCoMn High-Entropy Alloy Nanoparticles Loaded on Carbon Nanotubes as Bifunctional Oxygen Catalysts for Rechargeable Zinc-Air Batteries. Cao X; Gao Y; Wang Z; Zeng H; Song Y; Tang S; Luo L; Gong S ACS Appl Mater Interfaces; 2023 Jul; 15(27):32365-32375. PubMed ID: 37384940 [TBL] [Abstract][Full Text] [Related]
57. Synergistic vacancy engineering of Co/MnO@NC catalyst for superior oxygen reduction reaction in liquid/solid zinc-air batteries. Wang L; Huang J; Hu X; Huang Z; Gao M; Yao D; Taylor Isimjan T; Yang X J Colloid Interface Sci; 2024 Apr; 660():989-996. PubMed ID: 38290325 [TBL] [Abstract][Full Text] [Related]
58. Ga-Doped Pt-Ni Octahedral Nanoparticles as a Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction. Lim J; Shin H; Kim M; Lee H; Lee KS; Kwon Y; Song D; Oh S; Kim H; Cho E Nano Lett; 2018 Apr; 18(4):2450-2458. PubMed ID: 29578723 [TBL] [Abstract][Full Text] [Related]
59. Graphene-Encapsulated Co Jia N; Liu J; Gao Y; Chen P; Chen X; An Z; Li X; Chen Y ChemSusChem; 2019 Jul; 12(14):3390-3400. PubMed ID: 30895738 [TBL] [Abstract][Full Text] [Related]
60. Bifunctional catalysts of CoNi nanoparticle-embedded nitrogen-doped carbon nanotubes for rechargeable Zn-air batteries. Ran J; Guo X; Liu P; Peng S; Gao X; Gao D Nanotechnology; 2019 Oct; 30(43):435701. PubMed ID: 31300627 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]