These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38864242)

  • 1. Nonproliferative diabetic retinopathy dataset(NDRD): A database for diabetic retinopathy screening research and deep learning evaluation.
    Liang X; Wen H; Duan Y; He K; Feng X; Zhou G
    Health Informatics J; 2024; 30(2):14604582241259328. PubMed ID: 38864242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weakly supervised training for eye fundus lesion segmentation in patients with diabetic retinopathy.
    Li Y; Zhu M; Sun G; Chen J; Zhu X; Yang J
    Math Biosci Eng; 2022 Mar; 19(5):5293-5311. PubMed ID: 35430865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lightweight and multi-lesion segmentation model for diabetic retinopathy based on the fusion of mixed attention and ghost feature mapping.
    Gao W; Fan B; Fang Y; Song N
    Comput Biol Med; 2024 Feb; 169():107854. PubMed ID: 38109836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Diabetic Retinopathy from Ultra-Widefield Scanning Laser Ophthalmoscope Images: A Multicenter Deep Learning Analysis.
    Tang F; Luenam P; Ran AR; Quadeer AA; Raman R; Sen P; Khan R; Giridhar A; Haridas S; Iglicki M; Zur D; Loewenstein A; Negri HP; Szeto S; Lam BKY; Tham CC; Sivaprasad S; Mckay M; Cheung CY
    Ophthalmol Retina; 2021 Nov; 5(11):1097-1106. PubMed ID: 33540169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes.
    Ting DSW; Cheung CY; Lim G; Tan GSW; Quang ND; Gan A; Hamzah H; Garcia-Franco R; San Yeo IY; Lee SY; Wong EYM; Sabanayagam C; Baskaran M; Ibrahim F; Tan NC; Finkelstein EA; Lamoureux EL; Wong IY; Bressler NM; Sivaprasad S; Varma R; Jonas JB; He MG; Cheng CY; Cheung GCM; Aung T; Hsu W; Lee ML; Wong TY
    JAMA; 2017 Dec; 318(22):2211-2223. PubMed ID: 29234807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning.
    Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y
    Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading.
    Romero-Oraá R; Herrero-Tudela M; López MI; Hornero R; García M
    Comput Methods Programs Biomed; 2024 Jun; 249():108160. PubMed ID: 38583290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal image assessment using bi-level adaptive morphological component analysis.
    Javidi M; Harati A; Pourreza H
    Artif Intell Med; 2019 Aug; 99():101702. PubMed ID: 31606110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study.
    Ruamviboonsuk P; Tiwari R; Sayres R; Nganthavee V; Hemarat K; Kongprayoon A; Raman R; Levinstein B; Liu Y; Schaekermann M; Lee R; Virmani S; Widner K; Chambers J; Hersch F; Peng L; Webster DR
    Lancet Digit Health; 2022 Apr; 4(4):e235-e244. PubMed ID: 35272972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An effective and comprehensible method to detect and evaluate retinal damage due to diabetes complications.
    Dao QT; Trinh HQ; Nguyen VA
    PeerJ Comput Sci; 2023; 9():e1585. PubMed ID: 37810367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning system for detecting diabetic retinopathy across the disease spectrum.
    Dai L; Wu L; Li H; Cai C; Wu Q; Kong H; Liu R; Wang X; Hou X; Liu Y; Long X; Wen Y; Lu L; Shen Y; Chen Y; Shen D; Yang X; Zou H; Sheng B; Jia W
    Nat Commun; 2021 May; 12(1):3242. PubMed ID: 34050158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening.
    Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R
    Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FFU-Net: Feature Fusion U-Net for Lesion Segmentation of Diabetic Retinopathy.
    Xu Y; Zhou Z; Li X; Zhang N; Zhang M; Wei P
    Biomed Res Int; 2021; 2021():6644071. PubMed ID: 33490274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diabetic retinopathy screening using deep learning for multi-class imbalanced datasets.
    Saini M; Susan S
    Comput Biol Med; 2022 Oct; 149():105989. PubMed ID: 36037631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.
    Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW
    Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Comparison of Heatmapping Techniques in Deep Learning in the Context of Diabetic Retinopathy Lesion Detection.
    Van Craenendonck T; Elen B; Gerrits N; De Boever P
    Transl Vis Sci Technol; 2020 Dec; 9(2):64. PubMed ID: 33403156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based detection and stage grading for optimising diagnosis of diabetic retinopathy.
    Wang Y; Yu M; Hu B; Jin X; Li Y; Zhang X; Zhang Y; Gong D; Wu C; Zhang B; Yang J; Li B; Yuan M; Mo B; Wei Q; Zhao J; Ding D; Yang J; Li X; Yu W; Chen Y
    Diabetes Metab Res Rev; 2021 May; 37(4):e3445. PubMed ID: 33713564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing deep learning pre-trained networks on diabetic retinopathy fundus photographs with SLIC-G.
    Lim WX; Chen Z
    Med Biol Eng Comput; 2024 Aug; 62(8):2571-2583. PubMed ID: 38649629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IDRiD: Diabetic Retinopathy - Segmentation and Grading Challenge.
    Porwal P; Pachade S; Kokare M; Deshmukh G; Son J; Bae W; Liu L; Wang J; Liu X; Gao L; Wu T; Xiao J; Wang F; Yin B; Wang Y; Danala G; He L; Choi YH; Lee YC; Jung SH; Li Z; Sui X; Wu J; Li X; Zhou T; Toth J; Baran A; Kori A; Chennamsetty SS; Safwan M; Alex V; Lyu X; Cheng L; Chu Q; Li P; Ji X; Zhang S; Shen Y; Dai L; Saha O; Sathish R; Melo T; Araújo T; Harangi B; Sheng B; Fang R; Sheet D; Hajdu A; Zheng Y; Mendonça AM; Zhang S; Campilho A; Zheng B; Shen D; Giancardo L; Quellec G; Mériaudeau F
    Med Image Anal; 2020 Jan; 59():101561. PubMed ID: 31671320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.