These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 38864499)
21. Comparative genomics of Pseudomonas syringae reveals convergent gene gain and loss associated with specialization onto cherry (Prunus avium). Hulin MT; Armitage AD; Vicente JG; Holub EB; Baxter L; Bates HJ; Mansfield JW; Jackson RW; Harrison RJ New Phytol; 2018 Jul; 219(2):672-696. PubMed ID: 29726587 [TBL] [Abstract][Full Text] [Related]
22. Development of a Bacteriophage Cocktail against Pectobacterium carotovorum Subsp. Kim H; Kim M; Jee SN; Heu S; Ryu S Appl Environ Microbiol; 2022 Oct; 88(19):e0076122. PubMed ID: 36165651 [TBL] [Abstract][Full Text] [Related]
24. Isolation and partial characterization of bacteriophages infecting Pseudomonas syringae pv. actinidiae, causal agent of kiwifruit bacterial canker. Di Lallo G; Evangelisti M; Mancuso F; Ferrante P; Marcelletti S; Tinari A; Superti F; Migliore L; D'Addabbo P; Frezza D; Scortichini M; Thaller MC J Basic Microbiol; 2014 Nov; 54(11):1210-21. PubMed ID: 24810619 [TBL] [Abstract][Full Text] [Related]
25. Rapid quantification of bacteriophages and their bacterial hosts in vitro and in vivo using droplet digital PCR. Morella NM; Yang SC; Hernandez CA; Koskella B J Virol Methods; 2018 Sep; 259():18-24. PubMed ID: 29859196 [TBL] [Abstract][Full Text] [Related]
26. Advancements in the Use of Bacteriophages to Combat the Kiwifruit Canker Phytopathogen Luo J; Dai D; Lv L; Ahmed T; Chen L; Wang Y; An Q; Sun G; Li B Viruses; 2022 Dec; 14(12):. PubMed ID: 36560706 [TBL] [Abstract][Full Text] [Related]
27. Phage Morons Play an Important Role in Pseudomonas aeruginosa Phenotypes. Tsao YF; Taylor VL; Kala S; Bondy-Denomy J; Khan AN; Bona D; Cattoir V; Lory S; Davidson AR; Maxwell KL J Bacteriol; 2018 Nov; 200(22):. PubMed ID: 30150232 [TBL] [Abstract][Full Text] [Related]
28. Characteristics and whole-genome analysis of a novel Pseudomonas syringae pv. tomato bacteriophage D6 isolated from a karst cave. Wu Q; An N; Fang Z; Li S; Xiang L; Liu Q; Tan L; Weng Q Virus Genes; 2024 Jun; 60(3):295-308. PubMed ID: 38594490 [TBL] [Abstract][Full Text] [Related]
30. Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen. Scortichini M; Marcelletti S; Ferrante P; Petriccione M; Firrao G Mol Plant Pathol; 2012 Sep; 13(7):631-40. PubMed ID: 22353258 [TBL] [Abstract][Full Text] [Related]
31. Seed coating with phages for sustainable plant biocontrol of plant pathogens and influence of the seed coat mucilage. Erdrich SH; Schurr U; Frunzke J; Arsova B Microb Biotechnol; 2024 Jun; 17(6):e14507. PubMed ID: 38884488 [TBL] [Abstract][Full Text] [Related]
32. Characterization of Pseudomonas lytic phages and their application as a cocktail with antibiotics in controlling Pseudomonas aeruginosa. Ong SP; Azam AH; Sasahara T; Miyanaga K; Tanji Y J Biosci Bioeng; 2020 Jun; 129(6):693-699. PubMed ID: 32107153 [TBL] [Abstract][Full Text] [Related]
33. Physicochemical Characterization of Novel Bacteriophages of Zaer-Anaqz Z; Khakvar R; Mohammadi SA; Bannazadeh Baghi H; Koolivand D Phage (New Rochelle); 2024 Jun; 5(2):99-106. PubMed ID: 39119206 [TBL] [Abstract][Full Text] [Related]
34. Biological and Molecular Characterization of the Lytic Bacteriophage SoKa against Oueslati M; Holtappels D; Fortuna K; Hajlaoui MR; Lavigne R; Sadfi-Zouaoui N; Wagemans J Viruses; 2022 Sep; 14(9):. PubMed ID: 36146756 [No Abstract] [Full Text] [Related]
35. Bacteriophage cocktail for biocontrol of soft rot disease caused by Pectobacterium species in Chinese cabbage. Vu NT; Kim H; Lee S; Hwang IS; Kwon CT; Oh CS Appl Microbiol Biotechnol; 2024 Dec; 108(1):11. PubMed ID: 38159122 [TBL] [Abstract][Full Text] [Related]
36. Characterization of selected phages for biocontrol of food-spoilage pseudomonads. Johno D; Zhang Y; Mohammadi TN; Zhao J; Lin Y; Wang C; Lu Y; Abdelaziz MNS; Maung AT; Lin CY; El-Telbany M; Lwin SZC; Damaso CH; Masuda Y; Honjoh KI; Miyamoto T Int Microbiol; 2024 Aug; 27(4):1333-1344. PubMed ID: 38206524 [TBL] [Abstract][Full Text] [Related]
37. Arms race and fluctuating selection dynamics in Pseudomonas aeruginosa bacteria coevolving with phage OMKO1. Kortright KE; Chan BK; Evans BR; Turner PE J Evol Biol; 2022 Nov; 35(11):1475-1487. PubMed ID: 36168737 [TBL] [Abstract][Full Text] [Related]
38. Use of phage ϕ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: in vitro and ex vivo experiments. Pinheiro LAM; Pereira C; Barreal ME; Gallego PP; Balcão VM; Almeida A Appl Microbiol Biotechnol; 2020 Feb; 104(3):1319-1330. PubMed ID: 31853568 [TBL] [Abstract][Full Text] [Related]
39. Phages enhance both phytopathogen density control and rhizosphere microbiome suppressiveness. Wang X; Wang S; Huang M; He Y; Guo S; Yang K; Wang N; Sun T; Yang H; Yang T; Xu Y; Shen Q; Friman V-P; Wei Z mBio; 2024 Jun; 15(6):e0301623. PubMed ID: 38780276 [TBL] [Abstract][Full Text] [Related]
40. Relevance of the bacteriophage adherence to mucus model for Almeida GMdF; Ravantti J; Grdzelishvili N; Kakabadze E; Bakuradze N; Javakhishvili E; Megremis S; Chanishvili N; Papadopoulos N; Sundberg L-R Microbiol Spectr; 2024 Aug; 12(8):e0352023. PubMed ID: 38912817 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]