These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 38864546)
21. Low-latency label-free image-activated cell sorting using fast deep learning and AI inferencing. Tang R; Xia L; Gutierrez B; Gagne I; Munoz A; Eribez K; Jagnandan N; Chen X; Zhang Z; Waller L; Alaynick W; Cho SH; An C; Lo YH Biosens Bioelectron; 2023 Jan; 220():114865. PubMed ID: 36368140 [TBL] [Abstract][Full Text] [Related]
22. TOP-GAN: Stain-free cancer cell classification using deep learning with a small training set. Rubin M; Stein O; Turko NA; Nygate Y; Roitshtain D; Karako L; Barnea I; Giryes R; Shaked NT Med Image Anal; 2019 Oct; 57():176-185. PubMed ID: 31325721 [TBL] [Abstract][Full Text] [Related]
23. Fast interactive medical image segmentation with weakly supervised deep learning method. Girum KB; Créhange G; Hussain R; Lalande A Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1437-1444. PubMed ID: 32653985 [TBL] [Abstract][Full Text] [Related]
24. Semi-supervised adversarial model for benign-malignant lung nodule classification on chest CT. Xie Y; Zhang J; Xia Y Med Image Anal; 2019 Oct; 57():237-248. PubMed ID: 31352126 [TBL] [Abstract][Full Text] [Related]
25. Image3C, a multimodal image-based and label-independent integrative method for single-cell analysis. Accorsi A; Box AC; Peuß R; Wood C; Sánchez Alvarado A; Rohner N Elife; 2021 Jul; 10():. PubMed ID: 34286692 [TBL] [Abstract][Full Text] [Related]
26. Deep Learning-Based Single-Cell Optical Image Studies. Sun J; Tárnok A; Su X Cytometry A; 2020 Mar; 97(3):226-240. PubMed ID: 31981309 [TBL] [Abstract][Full Text] [Related]
27. Retrospective correction of motion-affected MR images using deep learning frameworks. Küstner T; Armanious K; Yang J; Yang B; Schick F; Gatidis S Magn Reson Med; 2019 Oct; 82(4):1527-1540. PubMed ID: 31081955 [TBL] [Abstract][Full Text] [Related]
30. MSCProfiler: a single cell image processing workflow to investigate mesenchymal stem cell heterogeneity. Gupta A; Shaik SK; Balasubramanian L; Chakraborty U Biotechniques; 2023 Nov; 75(5):195-209. PubMed ID: 37916466 [TBL] [Abstract][Full Text] [Related]
31. Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan). Barrera K; Merino A; Molina A; Rodellar J Comput Methods Programs Biomed; 2023 Feb; 229():107314. PubMed ID: 36565666 [TBL] [Abstract][Full Text] [Related]
32. Virtual-freezing fluorescence imaging flow cytometry. Mikami H; Kawaguchi M; Huang CJ; Matsumura H; Sugimura T; Huang K; Lei C; Ueno S; Miura T; Ito T; Nagasawa K; Maeno T; Watarai H; Yamagishi M; Uemura S; Ohnuki S; Ohya Y; Kurokawa H; Matsusaka S; Sun CW; Ozeki Y; Goda K Nat Commun; 2020 Mar; 11(1):1162. PubMed ID: 32139684 [TBL] [Abstract][Full Text] [Related]
33. Deep learning techniques in PET/CT imaging: A comprehensive review from sinogram to image space. Fallahpoor M; Chakraborty S; Pradhan B; Faust O; Barua PD; Chegeni H; Acharya R Comput Methods Programs Biomed; 2024 Jan; 243():107880. PubMed ID: 37924769 [TBL] [Abstract][Full Text] [Related]
34. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses. Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R Elife; 2020 Oct; 9():. PubMed ID: 33074102 [TBL] [Abstract][Full Text] [Related]
36. Automated Deep Learning-Based Diagnosis and Molecular Characterization of Acute Myeloid Leukemia Using Flow Cytometry. Lewis JE; Cooper LAD; Jaye DL; Pozdnyakova O Mod Pathol; 2024 Jan; 37(1):100373. PubMed ID: 37925056 [TBL] [Abstract][Full Text] [Related]
37. Real-time fluorescence imaging flow cytometry enabled by motion deblurring and deep learning algorithms. Wang Y; Huang Z; Wang X; Yang F; Yao X; Pan T; Li B; Chu J Lab Chip; 2023 Aug; 23(16):3615-3627. PubMed ID: 37458395 [TBL] [Abstract][Full Text] [Related]
38. Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets. Jiang J; Hu YC; Tyagi N; Zhang P; Rimner A; Deasy JO; Veeraraghavan H Med Phys; 2019 Oct; 46(10):4392-4404. PubMed ID: 31274206 [TBL] [Abstract][Full Text] [Related]
39. Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation. Umapathy L; Brown T; Mushtaq R; Greenhill M; Lu J; Martin D; Altbach M; Bilgin A Med Phys; 2024 Apr; 51(4):2707-2720. PubMed ID: 37956263 [TBL] [Abstract][Full Text] [Related]
40. Exploiting generative self-supervised learning for the assessment of biological images with lack of annotations. Mascolini A; Cardamone D; Ponzio F; Di Cataldo S; Ficarra E BMC Bioinformatics; 2022 Jul; 23(1):295. PubMed ID: 35871688 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]