BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38864546)

  • 21. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation.
    Chen L; He Q; Zhai Y; Deng M
    Bioinformatics; 2021 May; 37(6):775-784. PubMed ID: 33098418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Virtual Fluorescence Translation for Biological Tissue by Conditional Generative Adversarial Network.
    Liu X; Li B; Liu C; Ta D
    Phenomics; 2023 Aug; 3(4):408-420. PubMed ID: 37589024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan).
    Barrera K; Merino A; Molina A; Rodellar J
    Comput Methods Programs Biomed; 2023 Feb; 229():107314. PubMed ID: 36565666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resolution-based distillation for efficient histology image classification.
    DiPalma J; Suriawinata AA; Tafe LJ; Torresani L; Hassanpour S
    Artif Intell Med; 2021 Sep; 119():102136. PubMed ID: 34531005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unbiased single-cell morphology with self-supervised vision transformers.
    Doron M; Moutakanni T; Chen ZS; Moshkov N; Caron M; Touvron H; Bojanowski P; Pernice WM; Caicedo JC
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. scSemiGAN: a single-cell semi-supervised annotation and dimensionality reduction framework based on generative adversarial network.
    Xu Z; Luo J; Xiong Z
    Bioinformatics; 2022 Nov; 38(22):5042-5048. PubMed ID: 36193998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine learning aided single cell image analysis improves understanding of morphometric heterogeneity of human mesenchymal stem cells.
    Mukhopadhyay R; Chandel P; Prasad K; Chakraborty U
    Methods; 2024 May; 225():62-73. PubMed ID: 38490594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A weakly supervised deep learning approach for label-free imaging flow-cytometry-based blood diagnostics.
    Otesteanu CF; Ugrinic M; Holzner G; Chang YT; Fassnacht C; Guenova E; Stavrakis S; deMello A; Claassen M
    Cell Rep Methods; 2021 Oct; 1(6):100094. PubMed ID: 35474892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise.
    Wu J; Sheng VS; Zhang J; Li H; Dadakova T; Swisher CL; Cui Z; Zhao P
    ACM Comput Surv; 2020 Jun; 53(2):. PubMed ID: 34421185
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Label-free cell classification in holographic flow cytometry through an unbiased learning strategy.
    Ciaparrone G; Pirone D; Fiore P; Xin L; Xiao W; Li X; Bardozzo F; Bianco V; Miccio L; Pan F; Memmolo P; Tagliaferri R; Ferraro P
    Lab Chip; 2024 Feb; 24(4):924-932. PubMed ID: 38264771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploiting generative self-supervised learning for the assessment of biological images with lack of annotations.
    Mascolini A; Cardamone D; Ponzio F; Di Cataldo S; Ficarra E
    BMC Bioinformatics; 2022 Jul; 23(1):295. PubMed ID: 35871688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physicochemical Profiling of Macrophage Heterogeneity Using Deep Learning Integrated Nanosensor Cytometry.
    Han S; Lee Y; Kim J; Cho SY
    ACS Sens; 2023 Apr; 8(4):1676-1683. PubMed ID: 37018205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Siamese deep learning video flow cytometry for automatic and label-free clinical cervical cancer cell analysis.
    Liu C; Yuan Z; Liu Q; Song K; Kong B; Su X
    Biomed Opt Express; 2024 Apr; 15(4):2063-2077. PubMed ID: 38633087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The virtual staining method by quantitative phase imaging for label free lymphocytes based on self-supervised iteration cycle-consistent adversarial networks.
    Zhang L; Li S; Wang H; Jia X; Guo B; Yang Z; Fan C; Zhao H; Zhao Z; Zhang Z; Yuan L
    Rev Sci Instrum; 2024 Apr; 95(4):. PubMed ID: 38557883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A self-supervised guided knowledge distillation framework for unpaired low-dose CT image denoising.
    Wang J; Tang Y; Wu Z; Du Q; Yao L; Yang X; Li M; Zheng J
    Comput Med Imaging Graph; 2023 Jul; 107():102237. PubMed ID: 37116340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating heterogeneities of live mesenchymal stromal cells using AI-based label-free imaging.
    Imboden S; Liu X; Lee BS; Payne MC; Hsieh CJ; Lin NYC
    Sci Rep; 2021 Mar; 11(1):6728. PubMed ID: 33762607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Objective assessment of stored blood quality by deep learning.
    Doan M; Sebastian JA; Caicedo JC; Siegert S; Roch A; Turner TR; Mykhailova O; Pinto RN; McQuin C; Goodman A; Parsons MJ; Wolkenhauer O; Hennig H; Singh S; Wilson A; Acker JP; Rees P; Kolios MC; Carpenter AE
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21381-21390. PubMed ID: 32839303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Medical Image Classification Based on Semi-Supervised Generative Adversarial Network and Pseudo-Labelling.
    Liu K; Ning X; Liu S
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-ConDoS: Multimodal Contrastive Domain Sharing Generative Adversarial Networks for Self-Supervised Medical Image Segmentation.
    Zhang J; Zhang S; Shen X; Lukasiewicz T; Xu Z
    IEEE Trans Med Imaging; 2024 Jan; 43(1):76-95. PubMed ID: 37379176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.