These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 38864637)

  • 1. Oligomycin-producing
    Louviot F; Abdelrahman O; Abou-Mansour E; L'Haridon F; Allard P-M; Falquet L; Weisskopf L
    mSphere; 2024 Jul; 9(7):e0066723. PubMed ID: 38864637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streptomyces sp. FX13 inhibits fungicide-resistant Botrytis cinerea in vitro and in vivo by producing oligomycin A.
    Xiao L; Niu HJ; Qu TL; Zhang XF; Du FY
    Pestic Biochem Physiol; 2021 Jun; 175():104834. PubMed ID: 33993959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea.
    Maung CEH; Lee HG; Cho JY; Kim KY
    World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15.
    Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC
    Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp. Strain M10 antagonistic to Botrytis cinerea.
    Park CN; Lee JM; Lee D; Kim BS
    J Microbiol Biotechnol; 2008 May; 18(5):880-4. PubMed ID: 18633285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanistic insights of essential oil of Mentha piperita to control Botrytis cinerea and the prospection of lipid nanoparticles to its application.
    Fuentes JM; Jofré I; Tortella G; Benavides-Mendoza A; Diez MC; Rubilar O; Fincheira P
    Microbiol Res; 2024 Sep; 286():127792. PubMed ID: 38852300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp.
    Fan QS; Lin HJ; Hu YJ; Jin J; Yan HH; Zhang RQ
    Biotechnol Lett; 2024 Oct; 46(5):751-766. PubMed ID: 38811460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of linear Geranylphenols and their effect on mycelial growth of plant pathogen Botrytis cinerea.
    Espinoza L; Taborga L; Díaz K; Olea AF; Peña-Cortés H
    Molecules; 2014 Jan; 19(2):1512-26. PubMed ID: 24473210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diterpenoids from Streptomyces sp. SN194 and Their Antifungal Activity against Botrytis cinerea.
    Bi Y; Yu Z
    J Agric Food Chem; 2016 Nov; 64(45):8525-8529. PubMed ID: 27794606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the multitrophic interactions between the biocontrol agent Bacillus subtilis MBI 600, the pathogen Botrytis cinerea and their plant host.
    Samaras A; Karaoglanidis GS; Tzelepis G
    Microbiol Res; 2021 Jul; 248():126752. PubMed ID: 33839506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oligomycins inhibit Magnaporthe oryzae Triticum and suppress wheat blast disease.
    Chakraborty M; Mahmud NU; Muzahid ANM; Rabby SMF; Islam T
    PLoS One; 2020; 15(8):e0233665. PubMed ID: 32804955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal effectiveness of fungicide and peroxyacetic acid mixture on the growth of Botrytis cinerea.
    Ayoub F; Ben Oujji N; Chebli B; Ayoub M; Hafidi A; Salghi R; Jodeh S
    Microb Pathog; 2017 Apr; 105():74-80. PubMed ID: 28192222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal effect of 405-nm light on Botrytis cinerea.
    Imada K; Tanaka S; Ibaraki Y; Yoshimura K; Ito S
    Lett Appl Microbiol; 2014 Dec; 59(6):670-6. PubMed ID: 25236427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-Synthesis of Chloroxaloterpin A and B and Their Antifungal Activity against
    Zhang L; Wang X; Bi Y; Yu Z
    J Agric Food Chem; 2022 Jun; 70(23):7070-7076. PubMed ID: 35652483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the phytopathogen Botrytis cinerea using adipic acid monoethyl ester.
    Vicedo B; de la O Leyva M; Flors V; Finiti I; Del Amo G; Walters D; Real MD; García-Agustín P; González-Bosch C
    Arch Microbiol; 2006 Jan; 184(5):316-26. PubMed ID: 16261314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic and Transcriptomic Analyses to Elucidate Antifungal Mechanisms of
    Jin J; Yang RD; Cao H; Song GN; Cui F; Zhou S; Yuan J; Qi H; Wang JD; Chen J
    J Agric Food Chem; 2024 Aug; 72(31):17405-17416. PubMed ID: 39042819
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of the fungitoxic activity on Botrytis cinerea of the aristolochic acids I and II.
    Melo R; Sanhueza L; Mendoza L; Cotoras M
    Lett Appl Microbiol; 2019 Jan; 68(1):48-55. PubMed ID: 30325521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate deficiency increases plant susceptibility to Botrytis cinerea infection by inducing the abscisic acid pathway.
    Jaskolowski A; Poirier Y
    Plant J; 2024 Jul; 119(2):828-843. PubMed ID: 38804074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action mechanism for 3β-hydroxykaurenoic acid and 4,4-dimethylanthracene-1,9,10(4H)-trione on Botrytis cinerea.
    Mendoza L; Ribera A; Saavedra A; Silva E; Araya-Maturana R; Cotoras M
    Mycologia; 2015; 107(4):661-6. PubMed ID: 25977212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.