These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38864692)

  • 1. Targeting the protein folding transition state by mutation: Large scale (un)folding rate accelerations without altering native stability.
    Campos LA; Muñoz V
    Protein Sci; 2024 Jul; 33(7):e5031. PubMed ID: 38864692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding.
    Itzhaki LS; Otzen DE; Fersht AR
    J Mol Biol; 1995 Nov; 254(2):260-88. PubMed ID: 7490748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic core mutations in CI2 globally perturb fast side-chain dynamics similarly without regard to position.
    Whitley MJ; Zhang J; Lee AL
    Biochemistry; 2008 Aug; 47(33):8566-76. PubMed ID: 18656953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding of circular and permuted chymotrypsin inhibitor 2: retention of the folding nucleus.
    Otzen DE; Fersht AR
    Biochemistry; 1998 Jun; 37(22):8139-46. PubMed ID: 9609709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards the complete structural characterization of a protein folding pathway: the structures of the denatured, transition and native states for the association/folding of two complementary fragments of cleaved chymotrypsin inhibitor 2. Direct evidence for a nucleation-condensation mechanism.
    Neira JL; Davis B; Ladurner AG; Buckle AM; Gay Gde P; Fersht AR
    Fold Des; 1996; 1(3):189-208. PubMed ID: 9079381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved residues and the mechanism of protein folding.
    Shakhnovich E; Abkevich V; Ptitsyn O
    Nature; 1996 Jan; 379(6560):96-8. PubMed ID: 8538750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of Chymotrypsin Inhibitor 2 by Optimizing Non-Native Interactions.
    B da Silva F; M de Oliveira V; Sanches MN; Contessoto VG; Leite VBP
    J Chem Inf Model; 2020 Feb; 60(2):982-988. PubMed ID: 31794216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of an anomalously accelerating substitution in the folding of a prototypical two-state protein.
    Lawrence C; Kuge J; Ahmad K; Plaxco KW
    J Mol Biol; 2010 Oct; 403(3):446-58. PubMed ID: 20816985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain in the folding nucleus of chymotrypsin inhibitor 2.
    Ladurner AG; Itzhaki LS; Fersht AR
    Fold Des; 1997; 2(6):363-8. PubMed ID: 9427010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein unfolding rates correlate as strongly as folding rates with native structure.
    Broom A; Gosavi S; Meiering EM
    Protein Sci; 2015 Apr; 24(4):580-7. PubMed ID: 25422093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The changing nature of the protein folding transition state: implications for the shape of the free-energy profile for folding.
    Oliveberg M; Tan YJ; Silow M; Fersht AR
    J Mol Biol; 1998 Apr; 277(4):933-43. PubMed ID: 9545382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Mutant of Chymotrypsin Inhibitor 2 Stabilized through Increased Conformational Entropy.
    Gavrilov Y; Kümmerer F; Orioli S; Prestel A; Lindorff-Larsen K; Teilum K
    Biochemistry; 2022 Feb; 61(3):160-170. PubMed ID: 35019273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the hydrophobic core in the transition state for folding of chymotrypsin inhibitor 2: a critical test of the protein engineering method of analysis.
    Jackson SE; elMasry N; Fersht AR
    Biochemistry; 1993 Oct; 32(42):11270-8. PubMed ID: 8218192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of two-state to multi-state folding kinetics on fusion of two protein foldons.
    Inaba K; Kobayashi N; Fersht AR
    J Mol Biol; 2000 Sep; 302(1):219-33. PubMed ID: 10964571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow conformational changes in the rigid and highly stable chymotrypsin inhibitor 2.
    Gavrilov Y; Prestel A; Lindorff-Larsen K; Teilum K
    Protein Sci; 2023 Apr; 32(4):e4604. PubMed ID: 36807681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct comparison of experimental and calculated folding free energies for hydrophobic deletion mutants of chymotrypsin inhibitor 2: free energy perturbation calculations using transition and denatured states from molecular dynamics simulations of unfolding.
    Pan Y; Daggett V
    Biochemistry; 2001 Mar; 40(9):2723-31. PubMed ID: 11258883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Movement of the position of the transition state in protein folding.
    Matouschek A; Otzen DE; Itzhaki LS; Jackson SE; Fersht AR
    Biochemistry; 1995 Oct; 34(41):13656-62. PubMed ID: 7577956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved backbone desolvation and mutational hot spots in folding proteins.
    Fernández A
    Proteins; 2002 Jun; 47(4):447-57. PubMed ID: 12001223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the transition state for the folding/unfolding of the barley chymotrypsin inhibitor 2 and its implications for mechanisms of protein folding.
    Otzen DE; Itzhaki LS; elMasry NF; Jackson SE; Fersht AR
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10422-5. PubMed ID: 7937967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergy between simulation and experiment in describing the energy landscape of protein folding.
    Ladurner AG; Itzhaki LS; Daggett V; Fersht AR
    Proc Natl Acad Sci U S A; 1998 Jul; 95(15):8473-8. PubMed ID: 9671702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.