These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38864725)

  • 21. Lytic transglycosylases mitigate periplasmic crowding by degrading soluble cell wall turnover products.
    Weaver AI; Alvarez L; Rosch KM; Ahmed A; Wang GS; van Nieuwenhze MS; Cava F; Dörr T
    Elife; 2022 Jan; 11():. PubMed ID: 35073258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochemical and Phylogenetic Study of SltF, a Flagellar Lytic Transglycosylase from Rhodobacter sphaeroides.
    García-Ramos M; de la Mora J; Ballado T; Camarena L; Dreyfus G
    J Bacteriol; 2018 Oct; 200(20):. PubMed ID: 30061356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lytic transglycosylases: bacterial space-making autolysins.
    Scheurwater E; Reid CW; Clarke AJ
    Int J Biochem Cell Biol; 2008; 40(4):586-91. PubMed ID: 17468031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Murein-metabolizing enzymes from Escherichia coli: sequence analysis and controlled overexpression of the slt gene, which encodes the soluble lytic transglycosylase.
    Engel H; Kazemier B; Keck W
    J Bacteriol; 1991 Nov; 173(21):6773-82. PubMed ID: 1938883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neisseria gonorrhoeae uses two lytic transglycosylases to produce cytotoxic peptidoglycan monomers.
    Cloud-Hansen KA; Hackett KT; Garcia DL; Dillard JP
    J Bacteriol; 2008 Sep; 190(17):5989-94. PubMed ID: 18567658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural analysis of a specialized type III secretion system peptidoglycan-cleaving enzyme.
    Burkinshaw BJ; Deng W; Lameignère E; Wasney GA; Zhu H; Worrall LJ; Finlay BB; Strynadka NC
    J Biol Chem; 2015 Apr; 290(16):10406-17. PubMed ID: 25678709
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a periplasmic AlgK-AlgX-MucD multiprotein complex in Pseudomonas aeruginosa involved in biosynthesis and regulation of alginate.
    Hay ID; Schmidt O; Filitcheva J; Rehm BH
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):215-27. PubMed ID: 21713511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pseudomonas aeruginosa Regulated Intramembrane Proteolysis: Protease MucP Can Overcome Mutations in the AlgO Periplasmic Protease To Restore Alginate Production in Nonmucoid Revertants.
    Delgado C; Florez L; Lollett I; Lopez C; Kangeyan S; Kumari H; Stylianou M; Smiddy RJ; Schneper L; Sautter RT; Smith D; Szatmari G; Mathee K
    J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29784885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Pseudomonas aeruginosa homeostasis enzyme AlgL clears the periplasmic space of accumulated alginate during polymer biosynthesis.
    Gheorghita AA; Wolfram F; Whitfield GB; Jacobs HM; Pfoh R; Wong SSY; Guitor AK; Goodyear MC; Berezuk AM; Khursigara CM; Parsek MR; Howell PL
    J Biol Chem; 2022 Feb; 298(2):101560. PubMed ID: 34990713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of arginine residues in the active site of the membrane-bound lytic transglycosylase B from Pseudomonas aeruginosa.
    Reid CW; Blackburn NT; Clarke AJ
    Biochemistry; 2006 Feb; 45(7):2129-38. PubMed ID: 16475802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The periplasmic HrpB1 protein from Xanthomonas spp. binds to peptidoglycan and to components of the type III secretion system.
    Hausner J; Hartmann N; Lorenz C; Büttner D
    Appl Environ Microbiol; 2013 Oct; 79(20):6312-24. PubMed ID: 23934485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and functional characterization of TgpA, a critical protein for the viability of Pseudomonas aeruginosa.
    Uruburu M; Mastrangelo E; Bolognesi M; Ferrara S; Bertoni G; Milani M
    J Struct Biol; 2019 Mar; 205(3):18-25. PubMed ID: 30599211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes to its peptidoglycan-remodeling enzyme repertoire modulate β-lactam resistance in Pseudomonas aeruginosa.
    Cavallari JF; Lamers RP; Scheurwater EM; Matos AL; Burrows LL
    Antimicrob Agents Chemother; 2013 Jul; 57(7):3078-84. PubMed ID: 23612194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems.
    Zahrl D; Wagner M; Bischof K; Bayer M; Zavecz B; Beranek A; Ruckenstuhl C; Zarfel GE; Koraimann G
    Microbiology (Reading); 2005 Nov; 151(Pt 11):3455-3467. PubMed ID: 16272370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and functional characterization of CcmG from Pseudomonas aeruginosa, a key component of the bacterial cytochrome c maturation apparatus.
    Di Matteo A; Calosci N; Gianni S; Jemth P; Brunori M; Travaglini-Allocatelli C
    Proteins; 2010 Aug; 78(10):2213-21. PubMed ID: 20544959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural characterization of lytic transglycosylase MltD of Pseudomonas aeruginosa, a target for the natural product bulgecin A.
    Miguel-Ruano V; Feltzer R; Batuecas MT; Ramachandran B; El-Araby AM; Avila-Cobian LF; De Benedetti S; Mobashery S; Hermoso JA
    Int J Biol Macromol; 2024 May; 267(Pt 1):131420. PubMed ID: 38583835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lytic transglycosylases.
    Höltje JV
    EXS; 1996; 75():425-9. PubMed ID: 8765311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PilO of Pseudomonas aeruginosa 1244: subcellular location and domain assignment.
    Qutyan M; Paliotti M; Castric P
    Mol Microbiol; 2007 Dec; 66(6):1444-58. PubMed ID: 18005110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Two-Component System CopRS Maintains Subfemtomolar Levels of Free Copper in the Periplasm of Pseudomonas aeruginosa Using a Phosphatase-Based Mechanism.
    Novoa-Aponte L; Xu C; Soncini FC; Argüello JM
    mSphere; 2020 Dec; 5(6):. PubMed ID: 33361129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unconventional Antibacterials and Adjuvants.
    Chang M; Mahasenan KV; Hermoso JA; Mobashery S
    Acc Chem Res; 2021 Feb; 54(4):917-929. PubMed ID: 33512995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.