These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 38865096)
21. The structure and resilience of financial market networks. Peron TK; Costa Lda F; Rodrigues FA Chaos; 2012 Mar; 22(1):013117. PubMed ID: 22462993 [TBL] [Abstract][Full Text] [Related]
22. Scaling of the distribution of price fluctuations of individual companies. Plerou V; Gopikrishnan P; Nunes Amaral LA; Meyer M; Stanley HE Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt A):6519-29. PubMed ID: 11970569 [TBL] [Abstract][Full Text] [Related]
23. A new stock market analysis method based on evidential reasoning and hierarchical belief rule base to support investment decision making. Chen Y; Liu J; Gao Y; He W; Li H; Zhang G; Wei H Front Psychol; 2023; 14():1123578. PubMed ID: 36844262 [TBL] [Abstract][Full Text] [Related]
24. Predictive and Contemporaneous Power of the Determinants of Stock Liquidity. Xie L; Jin Y; Mo C Front Psychol; 2022; 13():912159. PubMed ID: 35967620 [TBL] [Abstract][Full Text] [Related]
25. Forward looking statement, investor sentiment and stock liquidity. Li C; Yan Y; Liu X; Wan S; Xu Y; Lin H Heliyon; 2023 Apr; 9(4):e15329. PubMed ID: 37123945 [TBL] [Abstract][Full Text] [Related]
26. Dynamics of the price-volume information flow based on surrogate time series. Nie CX Chaos; 2021 Jan; 31(1):013106. PubMed ID: 33754756 [TBL] [Abstract][Full Text] [Related]
27. Predicting stock market movements using network science: an information theoretic approach. Kim M; Sayama H Appl Netw Sci; 2017; 2(1):35. PubMed ID: 30443589 [TBL] [Abstract][Full Text] [Related]
29. A graph-based approach to multi-source heterogeneous information fusion in stock market. Wang J; Li X; Jia H; Peng T PLoS One; 2022; 17(8):e0272083. PubMed ID: 35951595 [TBL] [Abstract][Full Text] [Related]
30. Predicting Stock Price Falls Using News Data: Evidence from the Brazilian Market. Duarte JJ; Montenegro González S; Cruz JC Comput Econ; 2021; 57(1):311-340. PubMed ID: 33223615 [TBL] [Abstract][Full Text] [Related]
31. Dynamic Portfolio Strategy Using Clustering Approach. Ren F; Lu YN; Li SP; Jiang XF; Zhong LX; Qiu T PLoS One; 2017; 12(1):e0169299. PubMed ID: 28129333 [TBL] [Abstract][Full Text] [Related]
32. High-frequency trading and networked markets. Musciotto F; Piilo J; Mantegna RN Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34172575 [TBL] [Abstract][Full Text] [Related]
33. The US stock market leads the federal funds rate and treasury bond yields. Guo K; Zhou WX; Cheng SW; Sornette D PLoS One; 2011; 6(8):e22794. PubMed ID: 21857954 [TBL] [Abstract][Full Text] [Related]
34. Index cohesive force analysis reveals that the US market became prone to systemic collapses since 2002. Kenett DY; Shapira Y; Madi A; Bransburg-Zabary S; Gur-Gershgoren G; Ben-Jacob E PLoS One; 2011 Apr; 6(4):e19378. PubMed ID: 21556323 [TBL] [Abstract][Full Text] [Related]
35. Stock Market Forecasting Based on Spatiotemporal Deep Learning. Li YC; Huang HY; Yang NP; Kung YH Entropy (Basel); 2023 Sep; 25(9):. PubMed ID: 37761625 [TBL] [Abstract][Full Text] [Related]
36. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs. J Vis Exp; 2023 May; (195):. PubMed ID: 37235796 [TBL] [Abstract][Full Text] [Related]
37. Efficiency of the Moscow Stock Exchange before 2022. Shternshis A; Mazzarisi P; Marmi S Entropy (Basel); 2022 Aug; 24(9):. PubMed ID: 36141070 [TBL] [Abstract][Full Text] [Related]
38. Deep learning in the stock market-a systematic survey of practice, backtesting, and applications. Olorunnimbe K; Viktor H Artif Intell Rev; 2023; 56(3):2057-2109. PubMed ID: 35791405 [TBL] [Abstract][Full Text] [Related]
39. Temporal evolution of financial-market correlations. Fenn DJ; Porter MA; Williams S; McDonald M; Johnson NF; Jones NS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026109. PubMed ID: 21929066 [TBL] [Abstract][Full Text] [Related]
40. Modeling of Machine Learning-Based Extreme Value Theory in Stock Investment Risk Prediction: A Systematic Literature Review. Melina M; Sukono ; Napitupulu H; Mohamed N Big Data; 2024 Jan; ():. PubMed ID: 38232710 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]