BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38865157)

  • 1. Solvent Cavitation during Ambient Pressure Drying of Silica Aerogels.
    Gonthier J; Scoppola E; Rilling T; Gurlo A; Fratzl P; Wagermaier W
    Langmuir; 2024 Jun; 40(25):12925-12938. PubMed ID: 38865157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Springback effect of ambient-pressure-dried silica aerogels: nanoscopic effects of silylation revealed by
    Zemke F; Scoppola E; Simon U; Bekheet MF; Wagermaier W; Gurlo A
    Nanoscale Adv; 2023 Dec; 6(1):111-125. PubMed ID: 38125596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Springback effect and structural features during the drying of silica aerogels tracked by in-situ synchrotron X-ray scattering.
    Zemke F; Scoppola E; Simon U; Bekheet MF; Wagermaier W; Gurlo A
    Sci Rep; 2022 May; 12(1):7537. PubMed ID: 35534488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transparent silica aerogel slabs synthesized from nanoparticle colloidal suspensions at near ambient conditions on omniphobic liquid substrates.
    Marszewski M; King SC; Galy T; Kashanchi GN; Dashti A; Yan Y; Li M; Butts DM; McNeil PE; Lan E; Dunn B; Hu Y; Tolbert SH; Pilon L
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):884-897. PubMed ID: 34454313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology control of nickel nanoparticles prepared in situ within silica aerogels produced by novel ambient pressure drying.
    Lu J; Wang J; Hassan KT; Talmantaite A; Xiao Z; Hunt MRC; Šiller L
    Sci Rep; 2020 Jul; 10(1):11743. PubMed ID: 32678151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Mesopore Volume and Thermal Insulation of Silica Aerogel via Ambient Pressure Drying-Assisted Foaming Method.
    Guo J; Luo K; Zou W; Xu J; Guo B
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lightweight and highly hydrophobic silica aerogels dried in ambient pressure for an efficient oil/organic solvent adsorption.
    Sert Çok S; Koç F; Gi Zli N
    J Hazard Mater; 2021 Apr; 408():124858. PubMed ID: 33385720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying.
    Bangi UK; Venkateswara Rao A; Parvathy Rao A
    Sci Technol Adv Mater; 2008 Jul; 9(3):035006. PubMed ID: 27878003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the drying conditions on the microstructure of silica based xerogels and aerogels.
    Durães L; Ochoa M; Rocha N; Patrício R; Duarte N; Redondo V; Portugal A
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6828-34. PubMed ID: 22962830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong, Machinable, and Insulating Chitosan-Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths.
    Guerrero-Alburquerque N; Zhao S; Adilien N; Koebel MM; Lattuada M; Malfait WJ
    ACS Appl Mater Interfaces; 2020 May; 12(19):22037-22049. PubMed ID: 32302092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silica Aerogels with Self-Reinforced Microstructure for Bioinspired Hydrogels.
    Wang J; Du Y; Wang J; Gong W; Xu L; Yan L; You Y; Lu W; Zhang X
    Langmuir; 2021 May; 37(19):5923-5931. PubMed ID: 33939442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drying of Hierarchically Organized Porous Silica Monoliths-Comparison of Evaporative and Supercritical Drying.
    Kohns R; Torres-Rodríguez J; Euchler D; Seyffertitz M; Paris O; Reichenauer G; Enke D; Huesing N
    Gels; 2023 Jan; 9(1):. PubMed ID: 36661837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of instantaneous solvent exchange/surface modification process for ambient synthesis of monolithic silica aerogels.
    Hwang SW; Kim TY; Hyun SH
    J Colloid Interface Sci; 2008 Jun; 322(1):224-30. PubMed ID: 18407284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of Silica Aerogels by Ambient Pressure Drying without Causing Equipment Corrosion.
    Zhu L; Wang Y; Cui S; Yang F; Nie Z; Li Q; Wei Q
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30072663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock.
    Du A; Liu M; Huang S; Li C; Zhou B
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29937521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ modification of the silica backbone leading to highly porous monolithic hybrid organic-inorganic materials via ambient pressure drying.
    Noisser T; Reichenauer G; Hüsing N
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1025-9. PubMed ID: 24354277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Morphology of Poly(ether ether ketone) Aerogels.
    Talley SJ; Vivod SL; Nguyen BA; Meador MAB; Radulescu A; Moore RB
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31508-31519. PubMed ID: 31379150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambient Pressure Drying to Construct Cellulose Acetate/Benzoxazine Hybrid Aerogels with Flame Retardancy, Excellent Thermal Stability, and Superior Mechanical Strength Resistance to Cryogenic Temperature.
    Zhang S; Wang Z; Hu Y; Ji H; Xiao Y; Wang J; Xu G; Ding F
    Biomacromolecules; 2022 Dec; 23(12):5056-5064. PubMed ID: 36331293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the Springback Effect in Ambient-Pressure-Dried Silica Aerogels: The Effect of Surface Silylation.
    Zemke F; Gonthier J; Scoppola E; Simon U; Bekheet MF; Wagermaier W; Gurlo A
    Gels; 2023 Feb; 9(2):. PubMed ID: 36826330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Ambient pressure synthesis and characterization of silica aerogel as adsorbent for dieldrin].
    Sha W; Liu RP; Liu HJ; Qu JH
    Huan Jing Ke Xue; 2008 Dec; 29(12):3415-20. PubMed ID: 19256378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.