BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38865477)

  • 1. A portable inflatable soft wearable robot to assist the shoulder during industrial work.
    Zhou YM; Hohimer CJ; Young HT; McCann CM; Pont-Esteban D; Civici US; Jin Y; Murphy P; Wagner D; Cole T; Phipps N; Cho H; Bertacchi F; Pignataro I; Proietti T; Walsh CJ
    Sci Robot; 2024 Jun; 9(91):eadi2377. PubMed ID: 38865477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A soft wearable robot for the shoulder: Design, characterization, and preliminary testing.
    O'Neill CT; Phipps NS; Cappello L; Paganoni S; Walsh CJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1672-1678. PubMed ID: 28814060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical Effects of Using a Passive Exoskeleton for the Upper Limb in Industrial Manufacturing Activities: A Pilot Study.
    Coccia A; Capodaglio EM; Amitrano F; Gabba V; Panigazzi M; Pagano G; D'Addio G
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing shoulder elevation assist rate in exoskeletal rehabilitation based on muscular activity indices: a clinical feasibility study.
    Ito D; Fukuda M; Hosoi Y; Hirose R; Teramae T; Kamimoto T; Yamada Y; Tsuji T; Noda T; Kawakami M
    BMC Neurol; 2024 May; 24(1):144. PubMed ID: 38724916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic and kinetic functional requirements for industrial exoskeletons for lifting tasks and overhead lifting.
    Huysamen K; Power V; O'Sullivan L
    Ergonomics; 2020 Jul; 63(7):818-830. PubMed ID: 32320343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and kinematic effects of a soft exosuit on arm movements.
    Xiloyannis M; Chiaradia D; Frisoli A; Masia L
    J Neuroeng Rehabil; 2019 Feb; 16(1):29. PubMed ID: 30791919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptations to isolated shoulder fatigue during simulated repetitive work. Part I: Fatigue.
    Tse CT; McDonald AC; Keir PJ
    J Electromyogr Kinesiol; 2016 Aug; 29():34-41. PubMed ID: 26208429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air Efficient Soft Wearable Robot for High-Torque Elbow Flexion Assistance.
    Young H; Gerez L; Cole T; Inirio B; Proietti T; Closs B; Paganoni S; Walsh C
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of Wearable Sensors at the Shoulder Joint: Combining Wireless Electromyography Sensors and Inertial Measurement Units to Perform Physical Workplace Assessments.
    Poitras I; Bielmann M; Campeau-Lecours A; Mercier C; Bouyer LJ; Roy JS
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010034
    [No Abstract]   [Full Text] [Related]  

  • 11. Shoulder muscle activity and perceived comfort of industry workers using a commercial upper limb exoskeleton for simulated tasks.
    Pinho JP; Forner-Cordero A
    Appl Ergon; 2022 May; 101():103718. PubMed ID: 35202960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ergonomics assessment of passive upper-limb exoskeletons in an automotive assembly plant.
    Iranzo S; Piedrabuena A; Iordanov D; Martinez-Iranzo U; Belda-Lois JM
    Appl Ergon; 2020 Sep; 87():103120. PubMed ID: 32310110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the edge between soft and rigid: an assistive shoulder exoskeleton with hyper-redundant kinematics.
    Tiseni L; Xiloyannis M; Chiaradia D; Lotti N; Solazzi M; van der Kooij H; Frisoli A; Masia L
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():618-624. PubMed ID: 31374699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Human-Exoskeleton Interaction Dynamics: An In-Depth Analysis of Knee Flexion-Extension Performance across Varied Robot Assistance-Resistance Configurations.
    Mosconi D; Moreno Y; Siqueira A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical and Metabolic Effectiveness of an Industrial Exoskeleton for Overhead Work.
    Schmalz T; Schändlinger J; Schuler M; Bornmann J; Schirrmeister B; Kannenberg A; Ernst M
    Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31795365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assisting Forearm Function in Children With Movement Disorders
    Realmuto J; Sanger TD
    Front Robot AI; 2022; 9():877041. PubMed ID: 35783026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Occupational Shoulder Exoskeleton Reduces Muscle Activity and Fatigue During Overhead Work.
    De Bock S; Rossini M; Lefeber D; Rodriguez-Guerrero C; Geeroms J; Meeusen R; De Pauw K
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3008-3020. PubMed ID: 35290183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task.
    Qin J; Lin JH; Faber GS; Buchholz B; Xu X
    J Electromyogr Kinesiol; 2014 Jun; 24(3):404-11. PubMed ID: 24642235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear).
    Chen J; Lum PS
    J Neuroeng Rehabil; 2018 Mar; 15(1):13. PubMed ID: 29499712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.