BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38865478)

  • 1. Obtaining Robust Density Functional Tight-Binding Parameters for Solids across the Periodic Table.
    Cui M; Reuter K; Margraf JT
    J Chem Theory Comput; 2024 Jun; 20(12):5276-5290. PubMed ID: 38865478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFTB Parameters for the Periodic Table, Part 2: Energies and Energy Gradients from Hydrogen to Calcium.
    Oliveira AF; Philipsen P; Heine T
    J Chem Theory Comput; 2015 Nov; 11(11):5209-18. PubMed ID: 26574316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to Use the Force: Fitting Repulsive Potentials in Density-Functional Tight-Binding with Gaussian Process Regression.
    Panosetti C; Engelmann A; Nemec L; Reuter K; Margraf JT
    J Chem Theory Comput; 2020 Apr; 16(4):2181-2191. PubMed ID: 32155065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Enhanced DFTB Method for Periodic Systems: Learning from Electronic Density of States.
    Sun W; Fan G; van der Heide T; McSloy A; Frauenheim T; Aradi B
    J Chem Theory Comput; 2023 Jul; 19(13):3877-3888. PubMed ID: 37350192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFTB Parameters for the Periodic Table: Part III, Spin-Orbit Coupling.
    Jha G; Heine T
    J Chem Theory Comput; 2022 Jul; 18(7):4472-4481. PubMed ID: 35737969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFTB Parameters for the Periodic Table: Part 1, Electronic Structure.
    Wahiduzzaman M; Oliveira AF; Philipsen P; Zhechkov L; van Lenthe E; Witek HA; Heine T
    J Chem Theory Comput; 2013 Sep; 9(9):4006-17. PubMed ID: 26592396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Obtaining Electronic Properties of Molecules through Combining Density Functional Tight Binding with Machine Learning.
    Fan G; McSloy A; Aradi B; Yam CY; Frauenheim T
    J Phys Chem Lett; 2022 Nov; 13(43):10132-10139. PubMed ID: 36269857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Density Functional Tight Binding (DFTB)─Molecular Mechanics Approach for a Low-Cost Expansion of DFTB Applicability.
    Budiutama G; Li R; Manzhos S; Ihara M
    J Chem Theory Comput; 2023 Aug; 19(15):5189-5198. PubMed ID: 37450317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutral gold clusters studied by the isothermal Brownian-type molecular dynamics and metadynamics molecular dynamics simulations.
    Lai SK; Lim CC
    J Comput Chem; 2021 Feb; 42(5):310-325. PubMed ID: 33336370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SCC-DFTB parameters for simulating hybrid gold-thiolates compounds.
    Fihey A; Hettich C; Touzeau J; Maurel F; Perrier A; Köhler C; Aradi B; Frauenheim T
    J Comput Chem; 2015 Oct; 36(27):2075-87. PubMed ID: 26280464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Davis Computational Spectroscopy Workflow-From Structure to Spectra.
    Cavalcante LSR; Daemen LL; Goldman N; Moulé AJ
    J Chem Inf Model; 2021 Sep; 61(9):4486-4496. PubMed ID: 34449225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the accuracy of density functional tight binding models through ChIMES many-body interaction potentials.
    Goldman N; Fried LE; Lindsey RK; Pham CH; Dettori R
    J Chem Phys; 2023 Apr; 158(14):144112. PubMed ID: 37061479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tight-binding approximations to time-dependent density functional theory - A fast approach for the calculation of electronically excited states.
    Rüger R; van Lenthe E; Heine T; Visscher L
    J Chem Phys; 2016 May; 144(18):184103. PubMed ID: 27179467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density Functional Tight-Binding Model for Lithium-Silicon Alloys.
    Oviedo MB; Fernandez F; Otero M; Leiva EPM; Paz SA
    J Phys Chem A; 2023 Mar; 127(11):2637-2645. PubMed ID: 36898002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SCC-DFTB Parametrization for Boron and Boranes.
    Grundkötter-Stock B; Bezugly V; Kunstmann J; Cuniberti G; Frauenheim T; Niehaus TA
    J Chem Theory Comput; 2012 Mar; 8(3):1153-63. PubMed ID: 26593373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical Time-Dependent Long-Range Corrected Density Functional Tight Binding (TD-LC-DFTB) Gradients in DFTB+: Implementation and Benchmark for Excited-State Geometries and Transition Energies.
    Sokolov M; Bold BM; Kranz JJ; Höfener S; Niehaus TA; Elstner M
    J Chem Theory Comput; 2021 Apr; 17(4):2266-2282. PubMed ID: 33689344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt-Ru Alloys.
    Shi H; Koskinen P; Ramasubramaniam A
    J Phys Chem A; 2017 Mar; 121(12):2497-2502. PubMed ID: 28267337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons.
    Gaus M; Chou CP; Witek H; Elstner M
    J Phys Chem A; 2009 Oct; 113(43):11866-81. PubMed ID: 19778029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical Self-Consistent Correction for the Description of Hydrogen Bonds in DFTB3.
    Řezáč J
    J Chem Theory Comput; 2017 Oct; 13(10):4804-4817. PubMed ID: 28949517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.