These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38865880)
1. Highly proton-conductive and low swelling polymeric membranes achieved by hydrophilic covalent cross-linking. Cui C; Sun P; Wang Y; Ding H; Qu Z; Zhang B; Tian Y; Li Z J Colloid Interface Sci; 2024 Oct; 672():664-674. PubMed ID: 38865880 [TBL] [Abstract][Full Text] [Related]
2. Construction of High-Performance, High-Temperature Proton Exchange Membranes through Incorporating SiO Li X; Ma H; Wang P; Liu Z; Peng J; Hu W; Jiang Z; Liu B ACS Appl Mater Interfaces; 2019 Aug; 11(34):30735-30746. PubMed ID: 31369711 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and Properties of Phosphoric-Acid-Doped Polybenzimidazole with Hyperbranched Cross-Linkers Decorated with Imidazolium Groups as High-Temperature Proton Exchange Membranes. Gao C; Hu M; Wang L; Wang L Polymers (Basel); 2020 Feb; 12(3):. PubMed ID: 32120782 [TBL] [Abstract][Full Text] [Related]
4. Nitrogen-Rich Covalent Organic Frameworks Composited High-Temperature Proton Exchange Membranes with Ultralow Volume Expansion and Reduced Phosphoric Acid Leakage. Zhang W; Ji J; Li H; Li J; Sun Y; Tang Y; Yang T; Jin W; Zhao Y; Huang C; Gong C ACS Appl Mater Interfaces; 2024 Oct; 16(39):52309-52325. PubMed ID: 39293059 [TBL] [Abstract][Full Text] [Related]
5. Construction of Highly Conductive Cross-Linked Polybenzimidazole-Based Networks for High-Temperature Proton Exchange Membrane Fuel Cells. Li T; Yang J; Chen Q; Zhang H; Wang P; Hu W; Liu B Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903047 [TBL] [Abstract][Full Text] [Related]
6. Branched Sulfonimide-Based Proton Exchange Polymer Membranes from Poly(Phenylenebenzopheneone)s for Fuel Cell Applications. Sutradhar SC; Yoon S; Ryu T; Jin L; Zhang W; Kim W; Jang H Membranes (Basel); 2021 Feb; 11(3):. PubMed ID: 33673539 [TBL] [Abstract][Full Text] [Related]
7. Phase Inversion-Induced Porous Polybenzimidazole Fuel Cell Membranes: An Efficient Architecture for High-Temperature Water-Free Proton Transport. Lee S; Nam KH; Seo K; Kim G; Han H Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32707660 [TBL] [Abstract][Full Text] [Related]
8. Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Escorihuela J; García-Bernabé A; Montero Á; Sahuquillo Ó; Giménez E; Compañ V Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 31013669 [TBL] [Abstract][Full Text] [Related]
9. Enhancing Performance and Stability of High-Temperature Proton Exchange Membranes through Multiwalled Carbon Nanotube Incorporation into Self-Cross-Linked Fluorenone-Containing Polybenzimidazole. Huang J; Wei G; Wu A; Liu D; Wang L; Luo J ACS Appl Mater Interfaces; 2024 May; 16(20):25994-26003. PubMed ID: 38739746 [TBL] [Abstract][Full Text] [Related]
10. Various hydrophilic carbon dots doped high temperature proton exchange composite membranes based on polyvinylpyrrolidone and polyethersulfone. Dai Y; Wang J; Tao P; He R J Colloid Interface Sci; 2019 Oct; 553():503-511. PubMed ID: 31229869 [TBL] [Abstract][Full Text] [Related]
11. Construction of three-dimensional proton-conduction networks with functionalized PU@PAN/UiO-66 nanofibers for proton exchange membranes. Zhang X; Liu Z; Geng J; Liu H; Wang H; Tian M J Colloid Interface Sci; 2025 Jan; 678(Pt B):559-569. PubMed ID: 39260303 [TBL] [Abstract][Full Text] [Related]
12. Branched Poly(arylene ether ketone sulfone)s with Ultradensely Sulfonated Branched Centers for Proton Exchange Membranes: Effect of the Positions of the Sulfonic Acid Groups. Xie Y; Liu D; Ringuette A; Théato P ACS Appl Mater Interfaces; 2023 May; 15(20):24517-24527. PubMed ID: 37186810 [TBL] [Abstract][Full Text] [Related]
13. Covalent organic frameworks with flexible side chains in hybrid PEMs enable highly efficient proton conductivity. Liu Z; Pang X; Shi B; Xing N; Liu Y; Lyu B; Zhang L; Kong Y; Wang S; Gao Z; Xue R; Jing T; Liu C; Bai Q; Wu H; Jiang Z Mater Horiz; 2024 Jan; 11(1):141-150. PubMed ID: 37916392 [TBL] [Abstract][Full Text] [Related]
14. High Performance and Self-Humidifying of Novel Cross-Linked and Nanocomposite Proton Exchange Membranes Based on Sulfonated Polysulfone. Li X; Zhang Z; Xie Z; Guo X; Yang T; Li Z; Tu M; Rao H Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269328 [TBL] [Abstract][Full Text] [Related]
15. Highly Conductive Polybenzimidazole Membranes at Low Phosphoric Acid Uptake with Excellent Fuel Cell Performances by Constructing Long-Range Continuous Proton Transport Channels Using a Metal-Organic Framework (UIO-66). Chen J; Wang L; Wang L ACS Appl Mater Interfaces; 2020 Sep; 12(37):41350-41358. PubMed ID: 32804468 [TBL] [Abstract][Full Text] [Related]
16. Poly(ionic liquid)/OPBI Composite Membrane with Excellent Chemical Stability for High-Temperature Proton Exchange Membrane. Xiao Y; Chen H; Sun R; Zhang L; Xiang J; Cheng P; Han H; Wang S; Tang N Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571092 [TBL] [Abstract][Full Text] [Related]
17. Introduction of polymeric ionic liquids containing quaternary ammonium groups to construct high-temperature proton exchange membranes with high proton conductivity and stability. Wu W; Yu D; Luo Y; Guan X; Zhang S; Ma G; Zhou X; Li C; Wang S J Colloid Interface Sci; 2024 Dec; 675():689-699. PubMed ID: 38996699 [TBL] [Abstract][Full Text] [Related]
18. Two-Dimensional Zeolitic Imidazolate Framework/Carbon Nanotube Hybrid Networks Modified Proton Exchange Membranes for Improving Transport Properties. Sun H; Tang B; Wu P ACS Appl Mater Interfaces; 2017 Oct; 9(40):35075-35085. PubMed ID: 28952721 [TBL] [Abstract][Full Text] [Related]
19. Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride) for fuel cell applications. Yang J; Aili D; Li Q; Cleemann LN; Jensen JO; Bjerrum NJ; He R ChemSusChem; 2013 Feb; 6(2):275-82. PubMed ID: 23303655 [TBL] [Abstract][Full Text] [Related]
20. Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells. Wu X; Chen N; Hu C; Klok HA; Lee YM; Hu X Adv Mater; 2023 Jun; 35(26):e2210432. PubMed ID: 36642967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]