These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38866031)

  • 1. Quantifying the biomimicry gap in biohybrid robot-fish pairs.
    Papaspyros V; Theraulaz G; Sire C; Mondada F
    Bioinspir Biomim; 2024 Jun; 19(4):. PubMed ID: 38866031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational and robotic modeling reveal parsimonious combinations of interactions between individuals in schooling fish.
    Lei L; Escobedo R; Sire C; Theraulaz G
    PLoS Comput Biol; 2020 Mar; 16(3):e1007194. PubMed ID: 32176680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How mimetic should a robotic fish be to socially integrate into zebrafish groups?
    Cazenille L; Collignon B; Chemtob Y; Bonnet F; Gribovskiy A; Mondada F; Bredeche N; Halloy J
    Bioinspir Biomim; 2018 Jan; 13(2):025001. PubMed ID: 28952466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Any colour you like: fish interacting with bioinspired robots unravel mechanisms promoting mixed phenotype aggregations.
    Romano D; Stefanini C
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35439743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.
    Marras S; Porfiri M
    J R Soc Interface; 2012 Aug; 9(73):1856-68. PubMed ID: 22356819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disentangling and modeling interactions in fish with burst-and-coast swimming reveal distinct alignment and attraction behaviors.
    Calovi DS; Litchinko A; Lecheval V; Lopez U; Pérez Escudero A; Chaté H; Sire C; Theraulaz G
    PLoS Comput Biol; 2018 Jan; 14(1):e1005933. PubMed ID: 29324853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proactivity of fish and leadership of self-propelled robotic fish during interaction.
    Zhou Z; Liu J; Pan J; Yu J
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 37075759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies to modulate zebrafish collective dynamics with a closed-loop biomimetic robotic system.
    Chemtob Y; Cazenille L; Bonnet F; Gribovskiy A; Mondada F; Halloy J
    Bioinspir Biomim; 2020 May; 15(4):046004. PubMed ID: 32252047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sensory basis of schooling by intermittent swimming in the rummy-nose tetra (
    McKee A; Soto AP; Chen P; McHenry MJ
    Proc Biol Sci; 2020 Oct; 287(1937):20200568. PubMed ID: 33109007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning social interactions' strength drives collective response to light intensity in schooling fish.
    Xue T; Li X; Lin G; Escobedo R; Han Z; Chen X; Sire C; Theraulaz G
    PLoS Comput Biol; 2023 Nov; 19(11):e1011636. PubMed ID: 37976299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bio-inspired robotic fish utilizes the snap-through buckling of its spine to generate accelerations of more than 20g.
    Currier TM; Lheron S; Modarres-Sadeghi Y
    Bioinspir Biomim; 2020 Aug; 15(5):055006. PubMed ID: 32503011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zebrafish response to robotic fish: preference experiments on isolated individuals and small shoals.
    Polverino G; Abaid N; Kopman V; Macrì S; Porfiri M
    Bioinspir Biomim; 2012 Sep; 7(3):036019. PubMed ID: 22677608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems.
    Asnafi A; Mahzoon M
    Bioinspir Biomim; 2011 Sep; 6(3):036005. PubMed ID: 21852716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a biomimetic robotic fish and its control algorithm.
    Yu J; Tan M; Wang S; Chen E
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1798-810. PubMed ID: 15462446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Archerfish respond to a hunting robotic conspecific.
    Brown AA; Brown MF; Folk SR; Utter BA
    Biol Cybern; 2021 Dec; 115(6):585-598. PubMed ID: 34272968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism.
    Liao P; Zhang S; Sun D
    Bioinspir Biomim; 2018 Mar; 13(3):036007. PubMed ID: 29359705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm.
    Berlinger F; Gauci M; Nagpal R
    Sci Robot; 2021 Jan; 6(50):. PubMed ID: 34043581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple cues produced by a robotic fish modulate aggressive behaviour in Siamese fighting fishes.
    Romano D; Benelli G; Donati E; Remorini D; Canale A; Stefanini C
    Sci Rep; 2017 Jul; 7(1):4667. PubMed ID: 28680126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Living Materials Herald a New Era in Soft Robotics.
    Appiah C; Arndt C; Siemsen K; Heitmann A; Staubitz A; Selhuber-Unkel C
    Adv Mater; 2019 Sep; 31(36):e1807747. PubMed ID: 31267628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bottom-level motion control for robotic fish to swim in groups: modeling and experiments.
    Li L; Liu A; Wang W; Ravi S; Fu R; Yu J; Xie G
    Bioinspir Biomim; 2019 May; 14(4):046001. PubMed ID: 30875698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.