These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38866142)

  • 21. Experimental tests of co-combustion of pelletized leather tannery wastes and hardwood pellets.
    Kluska J; Turzyński T; Kardaś D
    Waste Manag; 2018 Sep; 79():22-29. PubMed ID: 30343749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues.
    Yuan R; Yu S; Shen Y
    Waste Manag; 2019 Mar; 87():86-96. PubMed ID: 31109588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heating and emission characteristics from combustion of charcoal and co-combustion of charcoal with faecal char-sawdust char briquettes in a ceramic cook stove.
    Otieno AO; Home PG; Raude JM; Murunga SI; Gachanja A
    Heliyon; 2022 Aug; 8(8):e10272. PubMed ID: 36033315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pre-Treatment of Furniture Waste for Smokeless Charcoal Production.
    Kazimierski P; Hercel P; Januszewicz K; Kardaś D
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.
    Ansah E; Wang L; Shahbazi A
    Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergetic biofuel production from co-pyrolysis of food and plastic waste: reaction kinetics and product behavior.
    Amrullah A; Farobie O; Septarini S; Satrio JA
    Heliyon; 2022 Aug; 8(8):e10278. PubMed ID: 36042715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical and Combustion Properties of Agglomerates of Wood of Popular Eastern European Species.
    Molenda M; Horabik J; Parafiniuk P; Oniszczuk A; Bańda M; Wajs J; Gondek E; Chutkowski M; Lisowski A; Wiącek J; Stasiak M
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34064230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pyrolysis of Specific Non-Recyclable Waste Materials: Energy Recovery and Detailed Product Characteristics.
    Janáková I; Čech M; Grabovská Š; Šigut O; Sala P; Kijo-Kleczkowska A
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distilled Waste Plastic Oil as Fuel for a Diesel Engine: Fuel Production, Combustion Characteristics, and Exhaust Gas Emissions.
    Arjharn W; Liplap P; Maithomklang S; Thammakul K; Chuepeng S; Sukjit E
    ACS Omega; 2022 Mar; 7(11):9720-9729. PubMed ID: 35350361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions.
    Park C; Lee N; Kim J; Lee J
    Environ Pollut; 2021 Feb; 270():116045. PubMed ID: 33257148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Life cycle environmental sustainability and cumulative energy assessment of biomass pellets biofuel derived from agroforest residues.
    Rashedi A; Gul N; Hussain M; Hadi R; Khan N; Nadeem SG; Khanam T; Asyraf MRM; Kumar V
    PLoS One; 2022; 17(10):e0275005. PubMed ID: 36206274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and characterisation of charcoal briquettes from water hyacinth (Eichhornia crassipes)-molasses blend.
    Carnaje NP; Talagon RB; Peralta JP; Shah K; Paz-Ferreiro J
    PLoS One; 2018; 13(11):e0207135. PubMed ID: 30412597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Migration characteristics of chlorine during pyrolysis of municipal solid waste pellets.
    Gao P; Hu Z; Sheng Y; Pan W; Tang L; Chen Y; Chen X; Wang F
    Waste Manag; 2023 Dec; 172():208-215. PubMed ID: 37924596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Valorization of Textile Sludge and Cattle Manure Wastes into Fuel Pellets and the Assessment of Their Combustion Characteristics.
    Gadhi TA; Mahar RB; Qureshi TA; Bawani MR; Khokhar DA; Pinjaro MA; Ansari I; Bonelli B
    ACS Omega; 2024 Jan; 9(1):456-463. PubMed ID: 38222515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational and Experimental Studies of Selected Types of Biomass Combustion in a Domestic Boiler.
    Bala-Litwiniak A; Musiał D
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor.
    Sivagami K; Kumar KV; Tamizhdurai P; Govindarajan D; Kumar M; Nambi I
    RSC Adv; 2022 Mar; 12(13):7612-7620. PubMed ID: 35424760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental investigation of wood combustion in a fixed bed with hot air.
    Markovic M; Bramer EA; Brem G
    Waste Manag; 2014 Jan; 34(1):49-62. PubMed ID: 24125795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Aspen plus process simulation model for exploring the feasibility and profitability of pyrolysis process for plastic waste management.
    Hasan MM; Rasul MG; Jahirul MI; Sattar MA
    J Environ Manage; 2024 Mar; 355():120557. PubMed ID: 38460332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving the physical, mechanical and energetic properties of
    Núñez-Retana VD; Rosales-Serna R; Prieto-Ruíz JÁ; Wehenkel C; Carrillo-Parra A
    PeerJ; 2020; 8():e9766. PubMed ID: 32879806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.