These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 38866385)
1. Discovery of CDC42 Inhibitors with a Favorable Pharmacokinetic Profile and Anticancer In Vivo Efficacy. Brindani N; Vuong LM; La Serra MA; Salvador N; Menichetti A; Acquistapace IM; Ortega JA; Veronesi M; Bertozzi SM; Summa M; Girotto S; Bertorelli R; Armirotti A; Ganesan AK; De Vivo M J Med Chem; 2024 Jun; 67(12):10401-10424. PubMed ID: 38866385 [TBL] [Abstract][Full Text] [Related]
2. Design, Synthesis, Brindani N; Vuong LM; Acquistapace IM; La Serra MA; Ortega JA; Veronesi M; Bertozzi SM; Summa M; Girotto S; Bertorelli R; Armirotti A; Ganesan AK; De Vivo M J Med Chem; 2023 Apr; 66(8):5981-6001. PubMed ID: 37026468 [TBL] [Abstract][Full Text] [Related]
3. Targeting Cdc42 with the small molecule drug AZA197 suppresses primary colon cancer growth and prolongs survival in a preclinical mouse xenograft model by downregulation of PAK1 activity. Zins K; Gunawardhana S; Lucas T; Abraham D; Aharinejad S J Transl Med; 2013 Nov; 11():295. PubMed ID: 24279335 [TBL] [Abstract][Full Text] [Related]
4. Prodrugs of Pyrazolo[3,4-d]pyrimidines: From Library Synthesis to Evaluation as Potential Anticancer Agents in an Orthotopic Glioblastoma Model. Vignaroli G; Iovenitti G; Zamperini C; Coniglio F; Calandro P; Molinari A; Fallacara AL; Sartucci A; Calgani A; Colecchia D; Mancini A; Festuccia C; Dreassi E; Valoti M; Musumeci F; Chiariello M; Angelucci A; Botta M; Schenone S J Med Chem; 2017 Jul; 60(14):6305-6320. PubMed ID: 28650650 [TBL] [Abstract][Full Text] [Related]
5. A Rac1/Cdc42 GTPase-specific small molecule inhibitor suppresses growth of primary human prostate cancer xenografts and prolongs survival in mice. Zins K; Lucas T; Reichl P; Abraham D; Aharinejad S PLoS One; 2013; 8(9):e74924. PubMed ID: 24040362 [TBL] [Abstract][Full Text] [Related]
6. Structure-based design of CDC42 effector interaction inhibitors for the treatment of cancer. Jahid S; Ortega JA; Vuong LM; Acquistapace IM; Hachey SJ; Flesher JL; La Serra MA; Brindani N; La Sala G; Manigrasso J; Arencibia JM; Bertozzi SM; Summa M; Bertorelli R; Armirotti A; Jin R; Liu Z; Chen CF; Edwards R; Hughes CCW; De Vivo M; Ganesan AK Cell Rep; 2022 Apr; 39(1):110641. PubMed ID: 35385746 [TBL] [Abstract][Full Text] [Related]
7. Structure-Guided Discovery and Preclinical Assessment of Novel (Thiophen-3-yl)aminopyrimidine Derivatives as Potent ERK1/2 Inhibitors. Shuai W; Xiao H; Yang P; Zhang Y; Bu F; Wu Y; Sun Q; Wang G; Ouyang L J Med Chem; 2024 Apr; 67(8):6425-6455. PubMed ID: 38613499 [TBL] [Abstract][Full Text] [Related]
8. R-Ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis. Guo Y; Kenney SR; Muller CY; Adams S; Rutledge T; Romero E; Murray-Krezan C; Prekeris R; Sklar LA; Hudson LG; Wandinger-Ness A Mol Cancer Ther; 2015 Oct; 14(10):2215-27. PubMed ID: 26206334 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and biological evaluation of aurora kinases inhibitors based on N-trisubstituted pyrimidine scaffold. Long L; Luo Y; Hou ZJ; Ma HJ; Long ZJ; Tu ZC; Huang LJ; Liu Q; Lu G Eur J Med Chem; 2018 Feb; 145():805-812. PubMed ID: 29358147 [TBL] [Abstract][Full Text] [Related]
10. Indazolylpyrazolopyrimidine as highly potent B-Raf inhibitors with in vivo activity. Wang X; Berger DM; Salaski EJ; Torres N; Dutia M; Hanna C; Hu Y; Levin JI; Powell D; Wojciechowicz D; Collins K; Frommer E; Lucas J J Med Chem; 2010 Nov; 53(21):7874-8. PubMed ID: 20961062 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a Dual Rac/Cdc42 Inhibitor MBQ-167 in Metastatic Cancer. Humphries-Bickley T; Castillo-Pichardo L; Hernandez-O'Farrill E; Borrero-Garcia LD; Forestier-Roman I; Gerena Y; Blanco M; Rivera-Robles MJ; Rodriguez-Medina JR; Cubano LA; Vlaar CP; Dharmawardhane S Mol Cancer Ther; 2017 May; 16(5):805-818. PubMed ID: 28450422 [TBL] [Abstract][Full Text] [Related]
12. Design, synthesis and evaluation of thieno[3,2-d]pyrimidine derivatives as novel potent CDK7 inhibitors. Zhang H; Lin G; Jia S; Wu J; Zhang Y; Tao Y; Huang W; Song M; Ding K; Ma D; Fan M Bioorg Chem; 2024 Jul; 148():107456. PubMed ID: 38761706 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of Cdc42-intersectin interaction by small molecule ZCL367 impedes cancer cell cycle progression, proliferation, migration, and tumor growth. Aguilar BJ; Zhao Y; Zhou H; Huo S; Chen YH; Lu Q Cancer Biol Ther; 2019; 20(6):740-749. PubMed ID: 30849276 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, anticancer activity and effects on cell cycle profile and apoptosis of novel thieno[2,3-d]pyrimidine and thieno[3,2-e] triazolo[4,3-c]pyrimidine derivatives. Kandeel MM; Refaat HM; Kassab AE; Shahin IG; Abdelghany TM Eur J Med Chem; 2015 Jan; 90():620-32. PubMed ID: 25499930 [TBL] [Abstract][Full Text] [Related]
15. Discovery of novel tetrahydroisoquinoline-containing pyrimidines as ALK inhibitors. Achary R; Yun JI; Park CM; Mathi GR; Lee JY; Ha JD; Chae CH; Ahn S; Park CH; Lee CO; Hwang JY; Yun CS; Jung HJ; Cho SY; Kim HR; Kim P Bioorg Med Chem; 2016 Jan; 24(2):207-19. PubMed ID: 26712094 [TBL] [Abstract][Full Text] [Related]
16. Discovery of 2-arylamino-4-(1-methyl-3-isopropylsulfonyl-4-pyrazol-amino)pyrimidines as potent anaplastic lymphoma kinase (ALK) inhibitors. Zhang P; Dong J; Zhong B; Zhang D; Jin C; Meng X; Sun D; Xu X; Zhou Y; Liang Z; Ji M; Li H; Xu T; Song G; Zhang L; Chen G; Yuan H; Shih J; Zhang R; Hou G; Jin Y; Yang Q Bioorg Med Chem Lett; 2015 Sep; 25(17):3738-43. PubMed ID: 26130408 [TBL] [Abstract][Full Text] [Related]