BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38866721)

  • 1. Sugar transport in thermophiles: Bridging lignocellulose deconstruction and bioconversion.
    Tjo H; Conway JM
    J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38866721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii.
    Zurawski JV; Khatibi PA; Akinosho HO; Straub CT; Compton SH; Conway JM; Lee LL; Ragauskas AJ; Davison BH; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermophilic lignocellulose deconstruction.
    Blumer-Schuette SE; Brown SD; Sander KB; Bayer EA; Kataeva I; Zurawski JV; Conway JM; Adams MW; Kelly RM
    FEMS Microbiol Rev; 2014 May; 38(3):393-448. PubMed ID: 24118059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extremely thermophilic microorganisms for biomass conversion: status and prospects.
    Blumer-Schuette SE; Kataeva I; Westpheling J; Adams MW; Kelly RM
    Curr Opin Biotechnol; 2008 Jun; 19(3):210-7. PubMed ID: 18524567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol yield and sugar usability in thermophilic ethanol production from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica.
    Rahayu F; Tajima T; Kato J; Kato S; Nakashimada Y
    J Biosci Bioeng; 2020 Feb; 129(2):160-164. PubMed ID: 31506242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the Lignocellulose-Degrading Enzyme System of
    Steindorff AS; Serra LA; Formighieri EF; de Faria FP; Poças-Fonseca MJ; de Almeida JRM
    Microbiol Spectr; 2021 Oct; 9(2):e0108821. PubMed ID: 34523973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation.
    Botha J; Mizrachi E; Myburg AA; Cowan DA
    Extremophiles; 2018 Jan; 22(1):1-12. PubMed ID: 29110088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world.
    Liu YJ; Li B; Feng Y; Cui Q
    Biotechnol Adv; 2020; 40():107535. PubMed ID: 32105675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook.
    Jojima T; Omumasaba CA; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):471-80. PubMed ID: 19838697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of hemicellulase and cellulase from the extremely thermophilic bacterium Caldicellulosiruptor owensensis and their potential application for bioconversion of lignocellulosic biomass without pretreatment.
    Peng X; Qiao W; Mi S; Jia X; Su H; Han Y
    Biotechnol Biofuels; 2015; 8():131. PubMed ID: 26322125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes.
    Moraïs S; Morag E; Barak Y; Goldman D; Hadar Y; Lamed R; Shoham Y; Wilson DB; Bayer EA
    mBio; 2012 Dec; 3(6):. PubMed ID: 23232718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the fermentable sugar yields of wheat straw by high-temperature pre-hydrolysis with thermophilic enzymes of Malbranchea cinnamomea.
    Zhu N; Jin H; Kong X; Zhu Y; Ye X; Xi Y; Du J; Li B; Lou M; Shah GM
    Microb Cell Fact; 2020 Jul; 19(1):149. PubMed ID: 32711527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose.
    Bing RG; Sulis DB; Wang JP; Adams MWW; Kelly RM
    Environ Microbiol Rep; 2021 Jun; 13(3):272-293. PubMed ID: 33684253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extremely thermophilic energy metabolisms: biotechnological prospects.
    Straub CT; Zeldes BM; Schut GJ; Adams MW; Kelly RM
    Curr Opin Biotechnol; 2017 Jun; 45():104-112. PubMed ID: 28319854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State of the art review of biofuels production from lignocellulose by thermophilic bacteria.
    Jiang Y; Xin F; Lu J; Dong W; Zhang W; Zhang M; Wu H; Ma J; Jiang M
    Bioresour Technol; 2017 Dec; 245(Pt B):1498-1506. PubMed ID: 28634129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switchgrass.
    D'haeseleer P; Gladden JM; Allgaier M; Chain PS; Tringe SG; Malfatti SA; Aldrich JT; Nicora CD; Robinson EW; Paša-Tolić L; Hugenholtz P; Simmons BA; Singer SW
    PLoS One; 2013; 8(7):e68465. PubMed ID: 23894306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioprospecting microbial hosts to valorize lignocellulose biomass - Environmental perspectives and value-added bioproducts.
    Lu H; Yadav V; Bilal M; Iqbal HMN
    Chemosphere; 2022 Feb; 288(Pt 2):132574. PubMed ID: 34656619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar transport in (hyper)thermophilic archaea.
    Koning SM; Albers SV; Konings WN; Driessen AJ
    Res Microbiol; 2002 Mar; 153(2):61-7. PubMed ID: 11902154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and Characterization of Lignocellulose-Degrading
    Meslé MM; Mueller RC; Peach J; Eilers B; Tripet BP; Bothner B; Copié V; Peyton BM
    Appl Environ Microbiol; 2022 Jan; 88(1):e0095821. PubMed ID: 34669438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolically engineered Caldicellulosiruptor bescii as a platform for producing acetone and hydrogen from lignocellulose.
    Straub CT; Bing RG; Otten JK; Keller LM; Zeldes BM; Adams MWW; Kelly RM
    Biotechnol Bioeng; 2020 Dec; 117(12):3799-3808. PubMed ID: 32770740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.