BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38866721)

  • 21. Metabolic characterization of anaerobic fungi provides a path forward for bioprocessing of crude lignocellulose.
    Henske JK; Wilken SE; Solomon KV; Smallwood CR; Shutthanandan V; Evans JE; Theodorou MK; O'Malley MA
    Biotechnol Bioeng; 2018 Apr; 115(4):874-884. PubMed ID: 29240224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological conversion of lignocellulosic biomass to ethanol.
    Lee J
    J Biotechnol; 1997 Jul; 56(1):1-24. PubMed ID: 9246788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective removal of lignin to enhance the process of preparing fermentable sugars and platform chemicals from lignocellulosic biomass.
    Zhang J; Wang Y; Du X; Qu Y
    Bioresour Technol; 2020 May; 303():122846. PubMed ID: 32032935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.
    Madhavan A; Srivastava A; Kondo A; Bisaria VS
    Crit Rev Biotechnol; 2012 Mar; 32(1):22-48. PubMed ID: 21204601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production.
    Chandel AK; Gonçalves BC; Strap JL; da Silva SS
    Crit Rev Biotechnol; 2015; 35(3):281-93. PubMed ID: 24156399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products.
    Ali N; Zhang Q; Liu ZY; Li FL; Lu M; Fang XC
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):455-473. PubMed ID: 31686144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of pretreatment on topochemical and ultrastructural changes of lignocellulose plant cell walls: a review].
    Ji Z; Ling Z; Zhang X; Ma J; Xu F
    Sheng Wu Gong Cheng Xue Bao; 2014 May; 30(5):707-15. PubMed ID: 25118394
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermophiles: potential chassis for lignocellulosic biorefinery.
    Jiang Y; Jiang W; Xin F; Zhang W; Jiang M
    Trends Biotechnol; 2022 Jun; 40(6):643-646. PubMed ID: 35042628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.
    Ali SS; Nugent B; Mullins E; Doohan FM
    PLoS One; 2013; 8(1):e54701. PubMed ID: 23382943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lignin deconstruction by anaerobic fungi.
    Lankiewicz TS; Choudhary H; Gao Y; Amer B; Lillington SP; Leggieri PA; Brown JL; Swift CL; Lipzen A; Na H; Amirebrahimi M; Theodorou MK; Baidoo EEK; Barry K; Grigoriev IV; Timokhin VI; Gladden J; Singh S; Mortimer JC; Ralph J; Simmons BA; Singer SW; O'Malley MA
    Nat Microbiol; 2023 Apr; 8(4):596-610. PubMed ID: 36894634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering Sugar Utilization and Microbial Tolerance toward Lignocellulose Conversion.
    Nieves LM; Panyon LA; Wang X
    Front Bioeng Biotechnol; 2015; 3():17. PubMed ID: 25741507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzyme Discovery in Anaerobic Fungi (Neocallimastigomycetes) Enables Lignocellulosic Biorefinery Innovation.
    Lankiewicz TS; Lillington SP; O'Malley MA
    Microbiol Mol Biol Rev; 2022 Dec; 86(4):e0004122. PubMed ID: 35852448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quorum sensing in thermophiles: prevalence of autoinducer-2 system.
    Kaur A; Capalash N; Sharma P
    BMC Microbiol; 2018 Jun; 18(1):62. PubMed ID: 29954335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic evaluation of Thermoanaerobacter spp. for the construction of designer co-cultures to improve lignocellulosic biofuel production.
    Verbeke TJ; Zhang X; Henrissat B; Spicer V; Rydzak T; Krokhin OV; Fristensky B; Levin DB; Sparling R
    PLoS One; 2013; 8(3):e59362. PubMed ID: 23555660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates.
    Lebuhn M; Hanreich A; Klocke M; Schlüter A; Bauer C; Pérez CM
    Anaerobe; 2014 Oct; 29():10-21. PubMed ID: 24785351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic strategies of microbial communities regulating lignocellulose deconstruction in a UK salt marsh.
    Leadbeater DR; Oates NC; Bennett JP; Li Y; Dowle AA; Taylor JD; Alponti JS; Setchfield AT; Alessi AM; Helgason T; McQueen-Mason SJ; Bruce NC
    Microbiome; 2021 Feb; 9(1):48. PubMed ID: 33597033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lignocellulose solubilization and conversion by extremely thermophilic Caldicellulosiruptor bescii improves by maintaining metabolic activity.
    Straub CT; Khatibi PA; Otten JK; Adams MWW; Kelly RM
    Biotechnol Bioeng; 2019 Aug; 116(8):1901-1908. PubMed ID: 30982956
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products.
    Chaturvedi V; Verma P
    3 Biotech; 2013 Oct; 3(5):415-431. PubMed ID: 28324338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Leveraging multiomics approaches for producing lignocellulose degrading enzymes.
    Dashora K; Gattupalli M; Javed Z; Tripathi GD; Sharma R; Mishra M; Bhargava A; Srivastava S
    Cell Mol Life Sci; 2022 Feb; 79(2):132. PubMed ID: 35152331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose.
    Zhu N; Yang J; Ji L; Liu J; Yang Y; Yuan H
    Biotechnol Biofuels; 2016; 9():243. PubMed ID: 27833656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.