BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38866721)

  • 41. Thermostable enzymes as biocatalysts in the biofuel industry.
    Yeoman CJ; Han Y; Dodd D; Schroeder CM; Mackie RI; Cann IK
    Adv Appl Microbiol; 2010; 70():1-55. PubMed ID: 20359453
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lignocellulolytic Potential of Microbial Consortia Isolated from a Local Biogas Plant: The Case of Thermostable Xylanases Secreted by Mesophilic Bacteria.
    Bombardi L; Salini A; Aulitto M; Zuliani L; Andreolli M; Bordoli P; Coltro A; Vitulo N; Zaccone C; Lampis S; Fusco S
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256164
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses.
    Lee LL; Blumer-Schuette SE; Izquierdo JA; Zurawski JV; Loder AJ; Conway JM; Elkins JG; Podar M; Clum A; Jones PC; Piatek MJ; Weighill DA; Jacobson DA; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475869
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic engineering of
    Tanwee TNN; Lipscomb GL; Vailionis JL; Zhang K; Bing RG; O'Quinn HC; Poole FL; Zhang Y; Kelly RM; Adams MWW
    Appl Environ Microbiol; 2024 Jan; 90(1):e0195123. PubMed ID: 38131671
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Progress in applying surfactants to lignocellulose hydrolysis for sugar production].
    Dai Y; Sun D
    Sheng Wu Gong Cheng Xue Bao; 2020 May; 36(5):861-867. PubMed ID: 32567269
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose.
    Mazzoli R; Olson DG
    Adv Appl Microbiol; 2020; 113():111-161. PubMed ID: 32948265
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of a Thermophilic Lignocellulose-Degrading Microbial Consortium with High Extracellular Xylanase Activity.
    Zhang D; Wang Y; Zhang C; Zheng D; Guo P; Cui Z
    J Microbiol Biotechnol; 2018 Feb; 28(2):305-313. PubMed ID: 29429304
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial Distribution and Diverse Metabolic Functions of Lignocellulose-Degrading Uncultured Bacteria as Revealed by Genome-Centric Metagenomics.
    Kougias PG; Campanaro S; Treu L; Tsapekos P; Armani A; Angelidaki I
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30006398
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineered microbial host selection for value-added bioproducts from lignocellulose.
    de Paula RG; Antoniêto ACC; Ribeiro LFC; Srivastava N; O'Donovan A; Mishra PK; Gupta VK; Silva RN
    Biotechnol Adv; 2019 Nov; 37(6):107347. PubMed ID: 30771467
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrolysis of lignocellulose by anaerobic fungi produces free sugars and organic acids for two-stage fine chemical production with Kluyveromyces marxianus.
    Hillman ET; Li M; Hooker CA; Englaender JA; Wheeldon I; Solomon KV
    Biotechnol Prog; 2021 Sep; 37(5):e3172. PubMed ID: 33960738
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives.
    Kumar R; Singh S; Singh OV
    J Ind Microbiol Biotechnol; 2008 May; 35(5):377-391. PubMed ID: 18338189
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges.
    Bhatia SK; Jagtap SS; Bedekar AA; Bhatia RK; Patel AK; Pant D; Rajesh Banu J; Rao CV; Kim YG; Yang YH
    Bioresour Technol; 2020 Mar; 300():122724. PubMed ID: 31926792
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of lignocellulose degradation in microorganisms.
    Gurovic MSV; Viceconte FR; Bidegain MA; Dietrich J
    J Appl Microbiol; 2023 Jan; 134(1):. PubMed ID: 36626734
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes.
    Bhalla A; Bansal N; Kumar S; Bischoff KM; Sani RK
    Bioresour Technol; 2013 Jan; 128():751-9. PubMed ID: 23246299
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review.
    Yoo CG; Meng X; Pu Y; Ragauskas AJ
    Bioresour Technol; 2020 Apr; 301():122784. PubMed ID: 31980318
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Secretome profile of Cellulomonas sp. B6 growing on lignocellulosic substrates.
    Piccinni FE; Ontañon OM; Ghio S; Sauka DH; Talia PM; Rivarola ML; Valacco MP; Campos E
    J Appl Microbiol; 2019 Mar; 126(3):811-825. PubMed ID: 30554465
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Advancing lignocellulose bioconversion through direct assessment of enzyme action on insoluble substrates.
    Goacher RE; Selig MJ; Master ER
    Curr Opin Biotechnol; 2014 Jun; 27():123-33. PubMed ID: 24525082
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes.
    Oh HN; Park D; Seong HJ; Kim D; Sul WJ
    J Microbiol; 2019 Oct; 57(10):865-873. PubMed ID: 31571125
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plant biotechnology for lignocellulosic biofuel production.
    Li Q; Song J; Peng S; Wang JP; Qu GZ; Sederoff RR; Chiang VL
    Plant Biotechnol J; 2014 Dec; 12(9):1174-92. PubMed ID: 25330253
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microbial diversity of thermophiles with biomass deconstruction potential in a foliage-rich hot spring.
    Lee LS; Goh KM; Chan CS; Annie Tan GY; Yin WF; Chong CS; Chan KG
    Microbiologyopen; 2018 Dec; 7(6):e00615. PubMed ID: 29602271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.