BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38866808)

  • 1. OsTH1 is a key player in thiamin biosynthesis in rice.
    Faustino M; Lourenço T; Strobbe S; Cao D; Fonseca A; Rocha I; Van Der Straeten D; Oliveira MM
    Sci Rep; 2024 Jun; 14(1):13591. PubMed ID: 38866808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin B
    Nie Y; Yu L; Mao L; Zou W; Zhang X; Zhao J
    J Integr Plant Biol; 2022 Aug; 64(8):1575-1595. PubMed ID: 35603832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Brassica cDNA clone encoding a bifunctional hydroxymethylpyrimidine kinase/thiamin-phosphate pyrophosphorylase involved in thiamin biosynthesis.
    Kim YS; Nosaka K; Downs DM; Kwak JM; Park D; Chung IK; Nam HG
    Plant Mol Biol; 1998 Aug; 37(6):955-66. PubMed ID: 9700068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering provides insight into the regulation of thiamin biosynthesis in plants.
    Strobbe S; Verstraete J; Stove C; Van Der Straeten D
    Plant Physiol; 2021 Aug; 186(4):1832-1847. PubMed ID: 33944954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering.
    Pourcel L; Moulin M; Fitzpatrick TB
    Front Plant Sci; 2013; 4():160. PubMed ID: 23755056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ectopic expression of a bacterial thiamin monophosphate kinase enhances vitamin B1 biosynthesis in plants.
    Chung YH; Chen TC; Yang WJ; Chen SZ; Chang JM; Hsieh WY; Hsieh MH
    Plant J; 2024 Mar; 117(5):1330-1343. PubMed ID: 37996996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation.
    Strobbe S; Verstraete J; Stove C; Van Der Straeten D
    Plant Biotechnol J; 2021 Jun; 19(6):1253-1267. PubMed ID: 33448624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Globally Important Haptophyte Algae Use Exogenous Pyrimidine Compounds More Efficiently than Thiamin.
    Gutowska MA; Shome B; Sudek S; McRose DL; Hamilton M; Giovannoni SJ; Begley TP; Worden AZ
    mBio; 2017 Oct; 8(5):. PubMed ID: 29018119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B
    Hsieh WY; Liao JC; Wang HT; Hung TH; Tseng CC; Chung TY; Hsieh MH
    Plant J; 2017 Jul; 91(1):145-157. PubMed ID: 28346710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities.
    Rapala-Kozik M; Olczak M; Ostrowska K; Starosta A; Kozik A
    Biochem J; 2007 Dec; 408(2):149-59. PubMed ID: 17696876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis.
    Hsieh WY; Wang HM; Chung YH; Lee KT; Liao HS; Hsieh MH
    Plant J; 2022 Sep; 111(5):1383-1396. PubMed ID: 35791282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exchange of Vitamin B
    Sathe RRM; Paerl RW; Hazra AB
    J Bacteriol; 2022 Apr; 204(4):e0050321. PubMed ID: 35357164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of the THI6 gene encoding a bifunctional thiamin-phosphate pyrophosphorylase/hydroxyethylthiazole kinase from Saccharomyces cerevisiae.
    Nosaka K; Nishimura H; Kawasaki Y; Tsujihara T; Iwashima A
    J Biol Chem; 1994 Dec; 269(48):30510-6. PubMed ID: 7982968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic and structural characterization of an archaeal thiamin phosphate synthase.
    Hayashi M; Kobayashi K; Esaki H; Konno H; Akaji K; Tazuya K; Yamada K; Nakabayashi T; Nosaka K
    Biochim Biophys Acta; 2014 Apr; 1844(4):803-9. PubMed ID: 24583237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Chlamydomonas thiamin metabolism in vivo reveals riboswitch plasticity.
    Moulin M; Nguyen GT; Scaife MA; Smith AG; Fitzpatrick TB
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14622-7. PubMed ID: 23959877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bacterial riboswitch class for the thiamin precursor HMP-PP employs a terminator-embedded aptamer.
    Atilho RM; Mirihana Arachchilage G; Greenlee EB; Knecht KM; Breaker RR
    Elife; 2019 Apr; 8():. PubMed ID: 30950790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A strictly monofunctional bacterial hydroxymethylpyrimidine phosphate kinase precludes damaging errors in thiamin biosynthesis.
    Thamm AM; Li G; Taja-Moreno M; Gerdes SY; de Crécy-Lagard V; Bruner SD; Hanson AD
    Biochem J; 2017; 474(16):2887-2895. PubMed ID: 28729425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical kinetic modelling followed by in vitro and in vivo assays reveal the bifunctional rice GTPCHII/DHBPS enzymes and demonstrate the key roles of OsRibA proteins in the vitamin B2 pathway.
    Faustino M; Lourenço T; Strobbe S; Cao D; Fonseca A; Rocha I; Van Der Straeten D; Oliveira MM
    BMC Plant Biol; 2024 Mar; 24(1):220. PubMed ID: 38532321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an
    De Vitto H; Belfon KKJ; Sharma N; Toay S; Abendroth J; Dranow DM; Lukacs CM; Choi R; Udell HS; Willis S; Barrera G; Beyer O; Li TD; Hicks KA; Torelli AT; French JB
    Biochemistry; 2024 Feb; ():. PubMed ID: 38306231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts.
    Kowalska E; Kozik A
    Cell Mol Biol Lett; 2008; 13(2):271-82. PubMed ID: 18161008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.