These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38866835)

  • 21. Setting, Strength, and Autogenous Shrinkage of Alkali-Activated Fly Ash and Slag Pastes: Effect of Slag Content.
    Nedeljković M; Li Z; Ye G
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30380615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of the Mechanical Properties and Microstructure of Alkali-Activated Fly Ash-Slag Composite Cementitious Materials.
    Lv Y; Wang C; Han W; Li X; Peng H
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Medium Temperature and Industrial By-Products on the Key Hardened Properties of High Performance Concrete.
    Safiuddin M; Raman SN; Zain MFM
    Materials (Basel); 2015 Dec; 8(12):8608-8623. PubMed ID: 28793732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Slag on the Strength and Shrinkage Properties of Metakaolin-Based Geopolymers.
    Zhan J; Li H; Pan Q; Cheng Z; Li H; Fu B
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-Term Performance of Concrete Made with Different Types of Cement under Severe Sulfate Exposure.
    Tahwia AM; Fouda RM; Abd Elrahman M; Youssf O
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strength Characteristics of Alkali-Activated Slag Mortars with the Addition of PET Flakes.
    Kocot A; Ćwirzeń A; Ponikiewski T; Katzer J
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimal Design of Ferronickel Slag Alkali-Activated Material for High Thermal Load Applications Developed by Design of Experiment.
    Arce A; Komkova A; Van De Sande J; Papanicolaou CG; Triantafillou TC
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The potential of one-part alkali-activated materials (AAMs) as a concrete patch mortar.
    Yusslee E; Beskhyroun S
    Sci Rep; 2022 Sep; 12(1):15902. PubMed ID: 36151108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of local metakaolin developed from natural material soorh and coal bottom ash on fresh, hardened properties and embodied carbon of self-compacting concrete.
    Keerio MA; Saand A; Kumar A; Bheel N; Ali K
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):60000-60018. PubMed ID: 34151404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of the Fly Ash Content on the Fresh and Hardened Properties of Alkali-Activated Slag Pastes with Admixtures.
    de Hita MJ; Criado M
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orthogonal Experimental Study on the Factors Affecting the Mechanical Properties of Alkali-Activated Slag Materials.
    Zhang K; Lu H; Li J; Bai H
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on workability, microstructural and hardened strength properties on self-compacted geopolymer concrete subjected to ambient curing.
    Natarajan KS; Ashokan M
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):17942-17950. PubMed ID: 36205871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Influence of CaO and MgO on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Powder.
    Feng S; Zhu J; Wang R; Qu Z; Song L; Wang H
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation on Compressive Characteristics of Steel-Slag Concrete.
    Nguyen TT; Phan DH; Mai HH; Nguyen DL
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32325853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accelerating the Reaction Kinetics of Na
    Wang H; Wang L; Xu Y; Cao K; Ge Y; Wang X; Li Q
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of Alkali-Activated Porous Concrete Composition from Slag Waste.
    Tamošaitis G; Vaičiukynienė D; Jaskaudas T; Mockiene J; Pupeikis D
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical Properties of a Sustainable Low-Carbon Geopolymer Concrete Using a Pumice-Derived Sodium Silicate Solution.
    Oti J; Adeleke BO; Anowie FX; Kinuthia JM; Ekwulo E
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-part alkali-activated slag binder for cemented fine tailings backfill: proportion optimization and properties evaluation.
    Zhu G; Zhu W; Qi Z; Yan B; Jiang H; Hou C
    Environ Sci Pollut Res Int; 2022 Oct; 29(49):73865-73877. PubMed ID: 35622284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization design of low-carbon hybrid concrete containing slag and limestone powder.
    Wang XY
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):10613-10623. PubMed ID: 36083370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of Fly Ash-Slag One-Part Geopolymers with Improved Properties.
    Faridmehr I; Sahraei MA; Nehdi ML; Valerievich KA
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.