These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38866882)
1. Enhancing the yield of Xenocoumacin 1 in Xenorhabdus nematophila YL001 by optimizing the fermentation process. Han Y; Zhang S; Wang Y; Gao J; Han J; Yan Z; Ta Y; Wang Y Sci Rep; 2024 Jun; 14(1):13506. PubMed ID: 38866882 [TBL] [Abstract][Full Text] [Related]
2. Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophila. Guo S; Zhang S; Fang X; Liu Q; Gao J; Bilal M; Wang Y; Zhang X Microb Cell Fact; 2017 Nov; 16(1):203. PubMed ID: 29141647 [TBL] [Abstract][Full Text] [Related]
3. CpxR negatively regulates the production of xenocoumacin 1, a dihydroisocoumarin derivative produced by Xenorhabdus nematophila. Zhang S; Fang X; Tang Q; Ge J; Wang Y; Zhang X Microbiologyopen; 2019 Feb; 8(2):e00674. PubMed ID: 29888873 [TBL] [Abstract][Full Text] [Related]
4. Enhancing the Production of Xenocoumacin 1 in Qin Y; Jia F; Zheng X; Li X; Duan J; Li B; Shen H; Yang X; Ren J; Li G J Agric Food Chem; 2023 Jun; 71(23):8959-8968. PubMed ID: 37278378 [TBL] [Abstract][Full Text] [Related]
5. Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila. Park D; Ciezki K; van der Hoeven R; Singh S; Reimer D; Bode HB; Forst S Mol Microbiol; 2009 Sep; 73(5):938-49. PubMed ID: 19682255 [TBL] [Abstract][Full Text] [Related]
6. Effects of cpxR on the growth characteristics and antibiotic production of Xenorhabdus nematophila. Guo S; Wang Z; Liu B; Gao J; Fang X; Tang Q; Bilal M; Wang Y; Zhang X Microb Biotechnol; 2019 May; 12(3):447-458. PubMed ID: 30623566 [TBL] [Abstract][Full Text] [Related]
7. Optimization of fermentation condition for antibiotic production by Xenorhabdus nematophila with response surface methodology. Wang YH; Feng JT; Zhang Q; Zhang X J Appl Microbiol; 2008 Mar; 104(3):735-44. PubMed ID: 17953686 [TBL] [Abstract][Full Text] [Related]
8. Enhanced antibiotic activity of Xenorhabdus nematophila by medium optimization. Wang YH; Li YP; Zhang Q; Zhang X Bioresour Technol; 2008 Apr; 99(6):1708-15. PubMed ID: 17531470 [TBL] [Abstract][Full Text] [Related]
9. Antifungal Activity and Mechanism of Xenocoumacin 1, a Natural Product from Zhang S; Han Y; Wang L; Han J; Yan Z; Wang Y; Wang Y J Fungi (Basel); 2024 Feb; 10(3):. PubMed ID: 38535184 [No Abstract] [Full Text] [Related]
10. Manipulation of pH shift to enhance the growth and antibiotic activity of Xenorhabdus nematophila. Wang Y; Fang X; Cheng Y; Zhang X J Biomed Biotechnol; 2011; 2011():672369. PubMed ID: 21660139 [TBL] [Abstract][Full Text] [Related]
11. Improving the Yield of Xenocoumacin 1 Enabled by In Situ Product Removal. Dong Y; Li X; Duan J; Qin Y; Yang X; Ren J; Li G ACS Omega; 2020 Aug; 5(32):20391-20398. PubMed ID: 32832792 [TBL] [Abstract][Full Text] [Related]
12. Effects of constant and shifting dissolved oxygen concentration on the growth and antibiotic activity of Xenorhabdus nematophila. Wang YH; Fang XL; Li YP; Zhang X Bioresour Technol; 2010 Oct; 101(19):7529-36. PubMed ID: 20488698 [TBL] [Abstract][Full Text] [Related]
13. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Wang Y; Fang X; An F; Wang G; Zhang X Microb Cell Fact; 2011 Nov; 10():98. PubMed ID: 22082189 [TBL] [Abstract][Full Text] [Related]
14. Statistical optimization of process variables for antibiotic activity of Xenorhabdus bovienii. Fang XL; Han LR; Cao XQ; Zhu MX; Zhang X; Wang YH PLoS One; 2012; 7(6):e38421. PubMed ID: 22701637 [TBL] [Abstract][Full Text] [Related]
15. Xenorhabdus khoisanae SB10 produces Lys-rich PAX lipopeptides and a Xenocoumacin in its antimicrobial complex. Dreyer J; Rautenbach M; Booysen E; van Staden AD; Deane SM; Dicks LMT BMC Microbiol; 2019 Jun; 19(1):132. PubMed ID: 31195965 [TBL] [Abstract][Full Text] [Related]
16. Role of secondary metabolites in establishment of the mutualistic partnership between Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Singh S; Orr D; Divinagracia E; McGraw J; Dorff K; Forst S Appl Environ Microbiol; 2015 Jan; 81(2):754-64. PubMed ID: 25398871 [TBL] [Abstract][Full Text] [Related]
17. A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophila. Reimer D; Luxenburger E; Brachmann AO; Bode HB Chembiochem; 2009 Aug; 10(12):1997-2001. PubMed ID: 19598185 [No Abstract] [Full Text] [Related]
18. Optimization of culture conditions for penicilazaphilone CÂ production by a marine-derived fungus Penicillium sclerotiorum M-22. Zhao HG; Wang M; Lin YY; Zhou SL Lett Appl Microbiol; 2018 Mar; 66(3):222-230. PubMed ID: 29285768 [TBL] [Abstract][Full Text] [Related]
19. Optimization of Medium Composition for Biomass Production of Choi GH; Lee NK; Paik HD J Microbiol Biotechnol; 2021 May; 31(5):717-725. PubMed ID: 33782221 [TBL] [Abstract][Full Text] [Related]
20. Optimization of fermentation conditions for surfactin production by B. subtilis YPS-32. Zhou Y; Yang X; Li Q; Peng Z; Li J; Zhang J BMC Microbiol; 2023 Apr; 23(1):117. PubMed ID: 37101148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]