BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38866950)

  • 1. Protein embeddings predict binding residues in disordered regions.
    Jahn LR; Marquet C; Heinzinger M; Rost B
    Sci Rep; 2024 Jun; 14(1):13566. PubMed ID: 38866950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MoRFPred-plus: Computational Identification of MoRFs in Protein Sequences using Physicochemical Properties and HMM profiles.
    Sharma R; Bayarjargal M; Tsunoda T; Patil A; Sharma A
    J Theor Biol; 2018 Jan; 437():9-16. PubMed ID: 29042212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Recognition Features in Zika Virus Proteome.
    Mishra PM; Uversky VN; Giri R
    J Mol Biol; 2018 Aug; 430(16):2372-2388. PubMed ID: 29080786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoRFPred_en: Sequence-based prediction of MoRFs using an ensemble learning strategy.
    Fang C; Moriwaki Y; Li C; Shimizu K
    J Bioinform Comput Biol; 2019 Dec; 17(6):1940015. PubMed ID: 32019410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying molecular recognition features in intrinsically disordered regions of proteins by transfer learning.
    Hanson J; Litfin T; Paliwal K; Zhou Y
    Bioinformatics; 2020 Feb; 36(4):1107-1113. PubMed ID: 31504193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MoRF_ESM: Prediction of MoRFs in disordered proteins based on a deep transformer protein language model.
    Fang C; He J; Yamana H
    J Bioinform Comput Biol; 2024 Apr; 22(2):2450006. PubMed ID: 38812466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying short disorder-to-order binding regions in disordered proteins with a deep convolutional neural network method.
    Fang C; Moriwaki Y; Tian A; Li C; Shimizu K
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950004. PubMed ID: 30866736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MFSPSSMpred: identifying short disorder-to-order binding regions in disordered proteins based on contextual local evolutionary conservation.
    Fang C; Noguchi T; Tominaga D; Yamana H
    BMC Bioinformatics; 2013 Oct; 14():300. PubMed ID: 24093637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OPAL+: Length-Specific MoRF Prediction in Intrinsically Disordered Protein Sequences.
    Sharma R; Sharma A; Raicar G; Tsunoda T; Patil A
    Proteomics; 2019 Mar; 19(6):e1800058. PubMed ID: 30324701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting MoRFs in protein sequences using HMM profiles.
    Sharma R; Kumar S; Tsunoda T; Patil A; Sharma A
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):504. PubMed ID: 28155710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering MoRFs by trisecting intrinsically disordered protein sequence into terminals and middle regions.
    Sharma R; Sharma A; Patil A; Tsunoda T
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):378. PubMed ID: 30717652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning.
    Zhang F; Zhao B; Shi W; Li M; Kurgan L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34905768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate and Fast Prediction of Intrinsically Disordered Protein by Multiple Protein Language Models and Ensemble Learning.
    Xu S; Onoda A
    J Chem Inf Model; 2024 Apr; 64(7):2901-2911. PubMed ID: 37883249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsically disordered proteins and structured proteins with intrinsically disordered regions have different functional roles in the cell.
    Deiana A; Forcelloni S; Porrello A; Giansanti A
    PLoS One; 2019; 14(8):e0217889. PubMed ID: 31425549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.
    Sharma R; Raicar G; Tsunoda T; Patil A; Sharma A
    Bioinformatics; 2018 Jun; 34(11):1850-1858. PubMed ID: 29360926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CLIP: accurate prediction of disordered linear interacting peptides from protein sequences using co-evolutionary information.
    Peng Z; Li Z; Meng Q; Zhao B; Kurgan L
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36458437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the penetrance of intrinsic protein disorder in rotavirus proteome.
    Kumar D; Singh A; Kumar P; Uversky VN; Rao CD; Giri R
    Int J Biol Macromol; 2020 Feb; 144():892-908. PubMed ID: 31739058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dark proteome of cancer: Intrinsic disorderedness and functionality of HIF-1α along with its interacting proteins.
    Garg N; Kumar P; Gadhave K; Giri R
    Prog Mol Biol Transl Sci; 2019; 166():371-403. PubMed ID: 31521236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embeddings from protein language models predict conservation and variant effects.
    Marquet C; Heinzinger M; Olenyi T; Dallago C; Erckert K; Bernhofer M; Nechaev D; Rost B
    Hum Genet; 2022 Oct; 141(10):1629-1647. PubMed ID: 34967936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retro-MoRFs: identifying protein binding sites by normal and reverse alignment and intrinsic disorder prediction.
    Xue B; Dunker AK; Uversky VN
    Int J Mol Sci; 2010 Sep; 11(10):3725-47. PubMed ID: 21152297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.