These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38867037)

  • 1. Global variability in atmospheric new particle formation mechanisms.
    Zhao B; Donahue NM; Zhang K; Mao L; Shrivastava M; Ma PL; Shen J; Wang S; Sun J; Gordon H; Tang S; Fast J; Wang M; Gao Y; Yan C; Singh B; Li Z; Huang L; Lou S; Lin G; Wang H; Jiang J; Ding A; Nie W; Qi X; Chi X; Wang L
    Nature; 2024 Jul; 631(8019):98-105. PubMed ID: 38867037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A large source of cloud condensation nuclei from new particle formation in the tropics.
    Williamson CJ; Kupc A; Axisa D; Bilsback KR; Bui T; Campuzano-Jost P; Dollner M; Froyd KD; Hodshire AL; Jimenez JL; Kodros JK; Luo G; Murphy DM; Nault BA; Ray EA; Weinzierl B; Wilson JC; Yu F; Yu P; Pierce JR; Brock CA
    Nature; 2019 Oct; 574(7778):399-403. PubMed ID: 31619794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High concentration of ultrafine particles in the Amazon free troposphere produced by organic new particle formation.
    Zhao B; Shrivastava M; Donahue NM; Gordon H; Schervish M; Shilling JE; Zaveri RA; Wang J; Andreae MO; Zhao C; Gaudet B; Liu Y; Fan J; Fast JD
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25344-25351. PubMed ID: 32989149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Specificity and Proton Transfer Mechanisms in Aerosol Prenucleation Clusters Relevant to New Particle Formation.
    Hou GL; Wang XB
    Acc Chem Res; 2020 Dec; 53(12):2816-2827. PubMed ID: 33108162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The striking effect of vertical mixing in the planetary boundary layer on new particle formation in the Yangtze River Delta.
    Lai S; Hai S; Gao Y; Wang Y; Sheng L; Lupascu A; Ding A; Nie W; Qi X; Huang X; Chi X; Zhao C; Zhao B; Shrivastava M; Fast JD; Yao X; Gao H
    Sci Total Environ; 2022 Jul; 829():154607. PubMed ID: 35306072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper.
    Cohen J; Zhang X; Francis J; Jung T; Kwok R; Overland J; Ballinger T; Blackport R; Bhatt US; Chen H; Coumou D; Feldstein S; Handorf D; Hell M; Henderson G; Ionita M; Kretschmer M; Laliberte F; Lee S; Linderholm H; Maslowski W; Rigor I; Routson C; Screen J; Semmler T; Singh D; Smith D; Stroeve J; Taylor PC; Vihma T; Wang M; Wang S; Wu Y; Wendisch M; Yoon J
    US CLIVAR Rep; 2018 Mar; n/a():. PubMed ID: 31633127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New particle formation (NPF) events in China urban clusters given by sever composite pollution background.
    Zhang Q; Jia S; Yang L; Krishnan P; Zhou S; Shao M; Wang X
    Chemosphere; 2021 Jan; 262():127842. PubMed ID: 32799146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Urban Pollution on Organic-Mediated New-Particle Formation and Particle Number Concentration in the Amazon Rainforest.
    Zhao B; Fast JD; Donahue NM; Shrivastava M; Schervish M; Shilling JE; Gordon H; Wang J; Gao Y; Zaveri RA; Liu Y; Gaudet B
    Environ Sci Technol; 2021 Apr; 55(8):4357-4367. PubMed ID: 33705653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation.
    Gordon H; Sengupta K; Rap A; Duplissy J; Frege C; Williamson C; Heinritzi M; Simon M; Yan C; Almeida J; Tröstl J; Nieminen T; Ortega IK; Wagner R; Dunne EM; Adamov A; Amorim A; Bernhammer AK; Bianchi F; Breitenlechner M; Brilke S; Chen X; Craven JS; Dias A; Ehrhart S; Fischer L; Flagan RC; Franchin A; Fuchs C; Guida R; Hakala J; Hoyle CR; Jokinen T; Junninen H; Kangasluoma J; Kim J; Kirkby J; Krapf M; Kürten A; Laaksonen A; Lehtipalo K; Makhmutov V; Mathot S; Molteni U; Monks SA; Onnela A; Peräkylä O; Piel F; Petäjä T; Praplan AP; Pringle KJ; Richards NA; Rissanen MP; Rondo L; Sarnela N; Schobesberger S; Scott CE; Seinfeld JH; Sharma S; Sipilä M; Steiner G; Stozhkov Y; Stratmann F; Tomé A; Virtanen A; Vogel AL; Wagner AC; Wagner PE; Weingartner E; Wimmer D; Winkler PM; Ye P; Zhang X; Hansel A; Dommen J; Donahue NM; Worsnop DR; Baltensperger U; Kulmala M; Curtius J; Carslaw KS
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12053-12058. PubMed ID: 27790989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of ammonia for springtime atmospheric new particle formation and aerosol number abundance over the United States.
    Nair AA; Yu F; Luo G
    Sci Total Environ; 2023 Mar; 863():160756. PubMed ID: 36528105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Multiphase Chemical Processes Influencing Atmospheric Aerosols, Air Quality, and Climate in the Anthropocene.
    Su H; Cheng Y; Pöschl U
    Acc Chem Res; 2020 Oct; 53(10):2034-2043. PubMed ID: 32927946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The contribution of new particle formation and subsequent growth to haze formation.
    Kulmala M; Cai R; Stolzenburg D; Zhou Y; Dada L; Guo Y; Yan C; Petäjä T; Jiang J; Kerminen VM
    Environ Sci Atmos; 2022 May; 2(3):352-361. PubMed ID: 35694136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mulitphase Atmospheric Chemistry in Liquid Water: Impacts and Controllability of Organic Aerosol.
    Carlton AG; Christiansen AE; Flesch MM; Hennigan CJ; Sareen N
    Acc Chem Res; 2020 Sep; 53(9):1715-1723. PubMed ID: 32803954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of aerosol number size distribution and new particle formation at a mountainous site in Southeast China.
    Zhang X; Yin Y; Lin Z; Han Y; Hao J; Yuan L; Chen K; Chen J; Kong S; Shan Y; Xiao H; Tan W
    Sci Total Environ; 2017 Jan; 575():309-320. PubMed ID: 27744158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and growth of sub-3-nm aerosol particles in experimental chambers.
    Dada L; Lehtipalo K; Kontkanen J; Nieminen T; Baalbaki R; Ahonen L; Duplissy J; Yan C; Chu B; Petäjä T; Lehtinen K; Kerminen VM; Kulmala M; Kangasluoma J
    Nat Protoc; 2020 Mar; 15(3):1013-1040. PubMed ID: 32051616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation properties of aerosol particles as cloud condensation nuclei at urban and high-altitude remote sites in southern Europe.
    Rejano F; Titos G; Casquero-Vera JA; Lyamani H; Andrews E; Sheridan P; Cazorla A; Castillo S; Alados-Arboledas L; Olmo FJ
    Sci Total Environ; 2021 Mar; 762():143100. PubMed ID: 33121775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system.
    Roldin P; Ehn M; Kurtén T; Olenius T; Rissanen MP; Sarnela N; Elm J; Rantala P; Hao L; Hyttinen N; Heikkinen L; Worsnop DR; Pichelstorfer L; Xavier C; Clusius P; Öström E; Petäjä T; Kulmala M; Vehkamäki H; Virtanen A; Riipinen I; Boy M
    Nat Commun; 2019 Sep; 10(1):4370. PubMed ID: 31554809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfuric acid-dimethylamine particle formation enhanced by functional organic acids: an integrated experimental and theoretical study.
    Wang C; Liu Y; Huang T; Feng Y; Wang Z; Lu R; Jiang S
    Phys Chem Chem Phys; 2022 Oct; 24(38):23540-23550. PubMed ID: 36129069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing effective radiative forcing from aerosol-cloud interactions over the global ocean.
    Wall CJ; Norris JR; Possner A; McCoy DT; McCoy IL; Lutsko NJ
    Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2210481119. PubMed ID: 36343255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerosols in the Pre-industrial Atmosphere.
    Carslaw KS; Gordon H; Hamilton DS; Johnson JS; Regayre LA; Yoshioka M; Pringle KJ
    Curr Clim Change Rep; 2017; 3(1):1-15. PubMed ID: 32226722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.