These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38867039)

  • 1. The respiratory system influences flight mechanics in soaring birds.
    Schachner ER; Moore AJ; Martinez A; Diaz RE; Echols MS; Atterholt J; W P Kissane R; Hedrick BP; Bates KT
    Nature; 2024 Jun; 630(8017):671-676. PubMed ID: 38867039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of the mechanics of the pectoralis muscle of the red-tailed hawk and the barred owl.
    Peters SE; Dobbins CS
    J Morphol; 2012 Mar; 273(3):312-23. PubMed ID: 22025367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soaring and non-soaring bats of the family pteropodidae (flying foxes, Pteropus spp.): wing morphology and flight performance.
    Lindhe-Norberg UM; Brooke AP; Trewhella WJ
    J Exp Biol; 2000 Feb; 203(Pt 3):651-64. PubMed ID: 10637193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone histological correlates of soaring and high-frequency flapping flight in the furculae of birds.
    Mitchell J; Legendre LJ; Lefèvre C; Cubo J
    Zoology (Jena); 2017 Jun; 122():90-99. PubMed ID: 28495051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coracoid strength as an indicator of wing-beat propulsion in birds.
    Akeda T; Fujiwara SI
    J Anat; 2023 Mar; 242(3):436-446. PubMed ID: 36380603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flight modes in migrating European bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding.
    Sapir N; Wikelski M; McCue MD; Pinshow B; Nathan R
    PLoS One; 2010 Nov; 5(11):e13956. PubMed ID: 21085655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Quantitative and Comparative Analysis of the Muscle Architecture of the Forelimb Myology of Diurnal Birds of Prey (Order Accipitriformes and Falconiformes).
    Bribiesca-Contreras F; Parslew B; Sellers WI
    Anat Rec (Hoboken); 2019 Oct; 302(10):1808-1823. PubMed ID: 31177616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling of soaring seabirds and implications for flight abilities of giant pterosaurs.
    Sato K; Sakamoto KQ; Watanuki Y; Takahashi A; Katsumata N; Bost CA; Weimerskirch H
    PLoS One; 2009; 4(4):e5400. PubMed ID: 19401767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure and cross-sectional shape of limb bones in Great Horned Owls and Red-tailed Hawks: how do these features relate to differences in flight and hunting behavior?
    Marelli CA; Simons EL
    PLoS One; 2014; 9(8):e106094. PubMed ID: 25162595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight.
    KleinHeerenbrink M; Johansson LC; Hedenström A
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle function in avian flight: achieving power and control.
    Biewener AA
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1496-506. PubMed ID: 21502121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogeny of Flight Capacity and Pectoralis Function in a Precocial Ground Bird (Alectoris chukar).
    Tobalske BW; Jackson BE; Dial KP
    Integr Comp Biol; 2017 Aug; 57(2):217-230. PubMed ID: 28662566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The gliding speed of migrating birds: slow and safe or fast and risky?
    Horvitz N; Sapir N; Liechti F; Avissar R; Mahrer I; Nathan R
    Ecol Lett; 2014 Jun; 17(6):670-9. PubMed ID: 24641086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations.
    Simons EL; O'connor PM
    Anat Rec (Hoboken); 2012 Mar; 295(3):386-96. PubMed ID: 22241723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of avian flight: muscles and constraints on performance.
    Tobalske BW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between wing bone microstructure and different flight styles: The case of the griffon vulture (gyps fulvus) and greater flamingo (phoenicopterus roseus).
    Frongia GN; Naitana S; Farina V; Gadau SD; Stefano MD; Muzzeddu M; Leoni G; Zedda M
    J Anat; 2021 Jul; 239(1):59-69. PubMed ID: 33650143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of wing morphology in three birds of prey: correlations with differences in flight behavior.
    Corvidae EL; Bierregaard RO; Peters SE
    J Morphol; 2006 May; 267(5):612-22. PubMed ID: 16477604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of avian flapping motion from non-volant winged dinosaurs based on modal effective mass analysis.
    Talori YS; Zhao JS; Liu YF; Lu WX; Li ZH; O'Connor JK
    PLoS Comput Biol; 2019 May; 15(5):e1006846. PubMed ID: 31048911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution.
    Serrano FJ; Chiappe LM
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28724626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of body size on take-off flight performance in the Phasianidae (Aves).
    Tobalske BW; Dial KP
    J Exp Biol; 2000 Nov; 203(Pt 21):3319-32. PubMed ID: 11023852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.