These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38867087)
21. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Moog D; Schmitt J; Senger J; Zarzycki J; Rexer KH; Linne U; Erb T; Maier UG Microb Cell Fact; 2019 Oct; 18(1):171. PubMed ID: 31601227 [TBL] [Abstract][Full Text] [Related]
22. Assessment of the PETase conformational changes induced by poly(ethylene terephthalate) binding. da Costa CHS; Dos Santos AM; Alves CN; Martí S; Moliner V; Santana K; Lameira J Proteins; 2021 Oct; 89(10):1340-1352. PubMed ID: 34075621 [TBL] [Abstract][Full Text] [Related]
23. Construction and Cloning of Plastic-degrading Recombinant Enzymes (MHETase). Janatunaim RZ; Fibriani A Recent Pat Biotechnol; 2020; 14(3):229-234. PubMed ID: 32160855 [TBL] [Abstract][Full Text] [Related]
24. Novel putative polyethylene terephthalate (PET) plastic degrading enzymes from the environmental metagenome. Karunatillaka I; Jaroszewski L; Godzik A Proteins; 2022 Feb; 90(2):504-511. PubMed ID: 34553433 [TBL] [Abstract][Full Text] [Related]
25. New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes. Danso D; Schmeisser C; Chow J; Zimmermann W; Wei R; Leggewie C; Li X; Hazen T; Streit WR Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29427431 [TBL] [Abstract][Full Text] [Related]
26. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Chen Z; Wang Y; Cheng Y; Wang X; Tong S; Yang H; Wang Z Sci Total Environ; 2020 Mar; 709():136138. PubMed ID: 31887523 [TBL] [Abstract][Full Text] [Related]
27. Characterization of a novel esterase and construction of a Rhodococcus-Burkholderia consortium capable of catabolism bis (2-hydroxyethyl) terephthalate. Jiang W; Sun J; Dong W; Zhou J; Jiang Y; Zhang W; Xin F; Jiang M Environ Res; 2023 Dec; 238(Pt 2):117240. PubMed ID: 37783328 [TBL] [Abstract][Full Text] [Related]
28. The PET-Degrading Potential of Global Metagenomes: From In Silico Mining to Active Enzymes. Chow J; Pérez-García P; Dierkes RF; Zhang H; Streit WR Methods Mol Biol; 2023; 2555():139-151. PubMed ID: 36306084 [TBL] [Abstract][Full Text] [Related]
29. [Enzymatic properties and degradation characterization of a bis(2-hydroxyethyl) terephthalate hydrolase from Zhang J; Shan R; Li X; Zeng Z; Sun D Sheng Wu Gong Cheng Xue Bao; 2023 May; 39(5):2027-2039. PubMed ID: 37212229 [TBL] [Abstract][Full Text] [Related]
30. Characterization and disruption of exonuclease genes from Streptomyces aureofaciens B96 and S. coelicolor A3(2). Brnáková Z; Godány A; Timko J Folia Microbiol (Praha); 2009; 54(2):97-104. PubMed ID: 19418245 [TBL] [Abstract][Full Text] [Related]
31. Microbial Consortia and Mixed Plastic Waste: Pangenomic Analysis Reveals Potential for Degradation of Multiple Plastic Types via Previously Identified PET Degrading Bacteria. Edwards S; León-Zayas R; Ditter R; Laster H; Sheehan G; Anderson O; Beattie T; Mellies JL Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628419 [TBL] [Abstract][Full Text] [Related]
32. Identification and characterization of the first β-1,3-d-xylosidase from a gram-positive bacterium, Streptomyces sp. SWU10. Phuengmaung P; Fujiwara D; Sukhumsirichart W; Sakamoto T Enzyme Microb Technol; 2018 May; 112():72-78. PubMed ID: 29499784 [TBL] [Abstract][Full Text] [Related]
34. Newly identified thermostable esterase from Sulfobacillus acidophilus: properties and performance in phthalate ester degradation. Zhang XY; Fan X; Qiu YJ; Li CY; Xing S; Zheng YT; Xu JH Appl Environ Microbiol; 2014 Nov; 80(22):6870-8. PubMed ID: 25149523 [TBL] [Abstract][Full Text] [Related]
35. Structural insight and engineering of a plastic degrading hydrolase Ple629. Li Z; Zhao Y; Wu P; Wang H; Li Q; Gao J; Qin HM; Wei H; Bornscheuer UT; Han X; Wei R; Liu W Biochem Biophys Res Commun; 2022 Oct; 626():100-106. PubMed ID: 35981419 [TBL] [Abstract][Full Text] [Related]
36. Analysis of Poly(ethylene terephthalate) degradation kinetics of evolved IsPETase variants using a surface crowding model. Zhong-Johnson EZL; Dong Z; Canova CT; Destro F; Cañellas M; Hoffman MC; Maréchal J; Johnson TM; Zheng M; Schlau-Cohen GS; Lucas MF; Braatz RD; Sprenger KG; Voigt CA; Sinskey AJ J Biol Chem; 2024 Mar; 300(3):105783. PubMed ID: 38395309 [TBL] [Abstract][Full Text] [Related]
37. Enhancing secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis WB600 mediated by the SP Wang N; Guan F; Lv X; Han D; Zhang Y; Wu N; Xia X; Tian J Lett Appl Microbiol; 2020 Sep; 71(3):235-241. PubMed ID: 32394501 [TBL] [Abstract][Full Text] [Related]
38. Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost. Amore A; Pepe O; Ventorino V; Birolo L; Giangrande C; Faraco V Microb Cell Fact; 2012 Dec; 11():164. PubMed ID: 23267666 [TBL] [Abstract][Full Text] [Related]
39. A Major Facilitator Superfamily (MFS) Efflux Pump, SCO4121, from Streptomyces coelicolor with Roles in Multidrug Resistance and Oxidative Stress Tolerance and Its Regulation by a MarR Regulator. Nag A; Mehra S Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33483304 [TBL] [Abstract][Full Text] [Related]
40. Mining the genome sequence for novel enzyme activity: characterisation of an unusual member of the hormone-sensitive lipase family of esterases from the genome of Streptomyces coelicolor A3 (2). Soror SH; Rao R; Cullum J Protein Eng Des Sel; 2009 Jun; 22(6):333-9. PubMed ID: 19321519 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]