These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Characterization of gene cluster heterogeneity in single-cell transcriptomic data within and across cancer types. Tiong KL; Lin YW; Yeang CH Biol Open; 2022 Jun; 11(6):. PubMed ID: 35665803 [TBL] [Abstract][Full Text] [Related]
3. Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data. Wang C; Lin Y; Li S; Guan J BMC Genomics; 2024 Sep; 25(1):875. PubMed ID: 39294558 [TBL] [Abstract][Full Text] [Related]
4. Likelihood-based deconvolution of bulk gene expression data using single-cell references. Erdmann-Pham DD; Fischer J; Hong J; Song YS Genome Res; 2021 Oct; 31(10):1794-1806. PubMed ID: 34301624 [TBL] [Abstract][Full Text] [Related]
5. New generative methods for single-cell transcriptome data in bulk RNA sequence deconvolution. Nishikawa T; Lee M; Amau M Sci Rep; 2024 Feb; 14(1):4156. PubMed ID: 38378978 [TBL] [Abstract][Full Text] [Related]
6. Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data. Andrade Barbosa B; van Asten SD; Oh JW; Farina-Sarasqueta A; Verheij J; Dijk F; van Laarhoven HWM; Ylstra B; Garcia Vallejo JJ; van de Wiel MA; Kim Y Nat Commun; 2021 Oct; 12(1):6106. PubMed ID: 34671028 [TBL] [Abstract][Full Text] [Related]
7. NNICE: a deep quantile neural network algorithm for expression deconvolution. Jin YW; Hu P; Liu Q Sci Rep; 2024 Jun; 14(1):14040. PubMed ID: 38890415 [TBL] [Abstract][Full Text] [Related]
8. HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD). Chiu YJ; Ni CE; Huang YH BMC Med Genomics; 2023 Oct; 16(Suppl 2):272. PubMed ID: 37907883 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive evaluation of deconvolution methods for human brain gene expression. Sutton GJ; Poppe D; Simmons RK; Walsh K; Nawaz U; Lister R; Gagnon-Bartsch JA; Voineagu I Nat Commun; 2022 Mar; 13(1):1358. PubMed ID: 35292647 [TBL] [Abstract][Full Text] [Related]
10. Deconvolution analysis of cell-type expression from bulk tissues by integrating with single-cell expression reference. Luo Y; Fan R Genet Epidemiol; 2022 Dec; 46(8):615-628. PubMed ID: 35788983 [TBL] [Abstract][Full Text] [Related]
11. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution. Liao J; Qian J; Fang Y; Chen Z; Zhuang X; Zhang N; Shao X; Hu Y; Yang P; Cheng J; Hu Y; Yu L; Yang H; Zhang J; Lu X; Shao L; Wu D; Gao Y; Chen H; Fan X Nat Commun; 2022 Oct; 13(1):6498. PubMed ID: 36310179 [TBL] [Abstract][Full Text] [Related]
12. Omnibus and robust deconvolution scheme for bulk RNA sequencing data integrating multiple single-cell reference sets and prior biological knowledge. Chen C; Leung YY; Ionita M; Wang LS; Li M Bioinformatics; 2022 Sep; 38(19):4530-4536. PubMed ID: 35980155 [TBL] [Abstract][Full Text] [Related]
13. Spatially informed cell-type deconvolution for spatial transcriptomics. Ma Y; Zhou X Nat Biotechnol; 2022 Sep; 40(9):1349-1359. PubMed ID: 35501392 [TBL] [Abstract][Full Text] [Related]
14. Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data. Shetty A; Wang S; Khan AB; English CW; Nouri SH; Magill ST; Raleigh DR; Klisch TJ; Harmanci AO; Patel AJ; Harmanci AS J Neurooncol; 2024 Jul; 168(3):515-524. PubMed ID: 38811523 [TBL] [Abstract][Full Text] [Related]
15. Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes. Cobos FA; Panah MJN; Epps J; Long X; Man TK; Chiu HS; Chomsky E; Kiner E; Krueger MJ; di Bernardo D; Voloch L; Molenaar J; van Hooff SR; Westermann F; Jansky S; Redell ML; Mestdagh P; Sumazin P Genome Biol; 2023 Aug; 24(1):177. PubMed ID: 37528411 [TBL] [Abstract][Full Text] [Related]
16. MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data. Fan J; Lyu Y; Zhang Q; Wang X; Li M; Xiao R Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208175 [TBL] [Abstract][Full Text] [Related]
17. Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures. Zaitsev K; Bambouskova M; Swain A; Artyomov MN Nat Commun; 2019 May; 10(1):2209. PubMed ID: 31101809 [TBL] [Abstract][Full Text] [Related]
18. Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve. Charytonowicz D; Brody R; Sebra R Nat Commun; 2023 Mar; 14(1):1350. PubMed ID: 36906603 [TBL] [Abstract][Full Text] [Related]
20. Deconvolving the contributions of cell-type heterogeneity on cortical gene expression. Patrick E; Taga M; Ergun A; Ng B; Casazza W; Cimpean M; Yung C; Schneider JA; Bennett DA; Gaiteri C; De Jager PL; Bradshaw EM; Mostafavi S PLoS Comput Biol; 2020 Aug; 16(8):e1008120. PubMed ID: 32804935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]