BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38867228)

  • 1. Advances in SIRT3 involvement in regulating autophagy-related mechanisms.
    Xi S; Chen W; Ke Y
    Cell Div; 2024 Jun; 19(1):20. PubMed ID: 38867228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-APQC, a small-molecule activator of Sirtuin-3 (SIRT3), alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis.
    Peng F; Liao M; Jin W; Liu W; Li Z; Fan Z; Zou L; Chen S; Zhu L; Zhao Q; Zhan G; Ouyang L; Peng C; Han B; Zhang J; Fu L
    Signal Transduct Target Ther; 2024 May; 9(1):133. PubMed ID: 38744811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity.
    Li S; Dou X; Ning H; Song Q; Wei W; Zhang X; Shen C; Li J; Sun C; Song Z
    Hepatology; 2017 Sep; 66(3):936-952. PubMed ID: 28437863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of SIRT3 in the Brain Under Physiological and Pathological Conditions.
    Sidorova-Darmos E; Sommer R; Eubanks JH
    Front Cell Neurosci; 2018; 12():196. PubMed ID: 30090057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidized nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase sirtuin-3 as a potential therapeutic target of Parkinson's disease.
    Zhou ZD; Tan EK
    Ageing Res Rev; 2020 Sep; 62():101107. PubMed ID: 32535274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity.
    Zhang T; Liu J; Shen S; Tong Q; Ma X; Lin L
    Cell Death Differ; 2020 Jan; 27(1):329-344. PubMed ID: 31160717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIRT3 Acts as a Positive Autophagy Regulator to Promote Lipid Mobilization in Adipocytes via Activating AMPK.
    Zhang T; Liu J; Tong Q; Lin L
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Double-Edged Sword of SIRT3 in Cancer and Its Therapeutic Applications.
    Ouyang S; Zhang Q; Lou L; Zhu K; Li Z; Liu P; Zhang X
    Front Pharmacol; 2022; 13():871560. PubMed ID: 35571098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIRT3: A potential therapeutic target for liver fibrosis.
    Ning Y; Dou X; Wang Z; Shi K; Wang Z; Ding C; Sang X; Zhong X; Shao M; Han X; Cao G
    Pharmacol Ther; 2024 May; 257():108639. PubMed ID: 38561088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sirtuin-3: A potential target for treating several types of brain injury.
    Yang H; Zhou Z; Liu Z; Chen J; Wang Y
    Front Cell Dev Biol; 2023; 11():1154831. PubMed ID: 37009480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research advances in the association between deacetylase Sirtuin3 and liver diseases].
    Yu J; Chen C; Wang WX
    Zhonghua Gan Zang Bing Za Zhi; 2016 Dec; 24(12):948-951. PubMed ID: 28073422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sirt3 overexpression alleviates hyperglycemia-induced vascular inflammation through regulating redox balance, cell survival, and AMPK-mediated mitochondrial homeostasis.
    Wang Y; Zhang X; Wang P; Shen Y; Yuan K; Li M; Liang W; Que H
    J Recept Signal Transduct Res; 2019 Aug; 39(4):341-349. PubMed ID: 31680596
    [No Abstract]   [Full Text] [Related]  

  • 13. SIRT3 alleviates high glucose-induced chondrocyte injury through the promotion of autophagy and suppression of apoptosis in osteoarthritis progression.
    Wang X; Liu Z; Deng S; Zhou J; Li X; Huang J; Chen J; Ji C; Deng Y; Hu Y
    Int Immunopharmacol; 2024 Mar; 130():111755. PubMed ID: 38408417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions.
    Kim TS; Jin YB; Kim YS; Kim S; Kim JK; Lee HM; Suh HW; Choe JH; Kim YJ; Koo BS; Kim HN; Jung M; Lee SH; Kim DK; Chung C; Son JW; Min JJ; Kim JM; Deng CX; Kim HS; Lee SR; Jo EK
    Autophagy; 2019 Aug; 15(8):1356-1375. PubMed ID: 30774023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts.
    Liang Q; Benavides GA; Vassilopoulos A; Gius D; Darley-Usmar V; Zhang J
    Biochem J; 2013 Sep; 454(2):249-57. PubMed ID: 23767918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mitochondrial NAD
    Fu Z; Kim H; Morse PT; Lu MJ; Hüttemann M; Cambronne XA; Zhang K; Zhang R
    Metabolism; 2022 Oct; 135():155275. PubMed ID: 35932995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAD
    Porter LC; Franczyk MP; Pietka T; Yamaguchi S; Lin JB; Sasaki Y; Verdin E; Apte RS; Yoshino J
    Am J Physiol Endocrinol Metab; 2018 Oct; 315(4):E520-E530. PubMed ID: 29634313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential relationship between Sirt3 and autophagy in ovarian cancer.
    Shi Y; He R; Yang Y; He Y; Zhan L; Wei B
    Oncol Lett; 2020 Nov; 20(5):162. PubMed ID: 32934730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sevoflurane preconditioning alleviates myocardial ischemia reperfusion injury through mitochondrial NAD
    Qin X; Qin Q; Ran K; Yuan G; Chang Y; Wang Y; Xiao Y
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Aug; 47(8):1108-1119. PubMed ID: 36097779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autophagy maintains ubiquitination-proteasomal degradation of Sirt3 to limit oxidative stress in K562 leukemia cells.
    Fang Y; Wang J; Xu L; Cao Y; Xu F; Yan L; Nie M; Yuan N; Zhang S; Zhao R; Wang H; Wu M; Zhang X; Wang J
    Oncotarget; 2016 Jun; 7(24):35692-35702. PubMed ID: 27232755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.