BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38867346)

  • 1. An Ultramicroelectrode Electrochemistry and Surface Plasmon Resonance Coupling Method for Cell Exocytosis Study.
    Zhao R; Yan B; Li D; Guo Z; Huang Y; Wang D; Yao X
    Anal Chem; 2024 Jun; 96(25):10228-10236. PubMed ID: 38867346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrodeposited Gold on Carbon-Fiber Microelectrodes for Enhancing Amperometric Detection of Dopamine Release from Pheochromocytoma Cells.
    Barlow ST; Louie M; Hao R; Defnet PA; Zhang B
    Anal Chem; 2018 Aug; 90(16):10049-10055. PubMed ID: 30047726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic-Aided Fabrication of Nanostructured Au-Ring Microelectrodes for Monitoring Transmitters Released from Single Cells.
    Wang K; Zhao X; Li B; Wang K; Zhang X; Mao L; Ewing A; Lin Y
    Anal Chem; 2017 Sep; 89(17):8683-8688. PubMed ID: 28787575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released from cell populations.
    Sasso L; Heiskanen A; Diazzi F; Dimaki M; Castillo-León J; Vergani M; Landini E; Raiteri R; Ferrari G; Carminati M; Sampietro M; Svendsen WE; Emnéus J
    Analyst; 2013 Jul; 138(13):3651-9. PubMed ID: 23628978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive detection of exocytotic dopamine release using a gold-nanoparticle-network microelectrode.
    Adams KL; Jena BK; Percival SJ; Zhang B
    Anal Chem; 2011 Feb; 83(3):920-7. PubMed ID: 21175175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous study of subcellular exocytosis with individually addressable multiple microelectrodes.
    Wang J; Ewing AG
    Analyst; 2014 Jul; 139(13):3290-5. PubMed ID: 24740449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the diffusion coefficient of dopamine at the cell surface during amperometric detection: disk vs ring microelectrodes.
    Trouillon R; Lin Y; Mellander LJ; Keighron JD; Ewing AG
    Anal Chem; 2013 Jul; 85(13):6421-8. PubMed ID: 23706095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes.
    Li X; Majdi S; Dunevall J; Fathali H; Ewing AG
    Angew Chem Int Ed Engl; 2015 Oct; 54(41):11978-82. PubMed ID: 26266819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electro-triggering and electrochemical monitoring of dopamine exocytosis from a single cell by using ultrathin electrodes based on Au nanowires.
    Kang M; Yoo SM; Gwak R; Eom G; Kim J; Lee SY; Kim B
    Nanoscale; 2016 Jan; 8(1):214-8. PubMed ID: 26645731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Disk and Nanotip Electrodes for Measurement of Single-Cell Amperometry during Exocytotic Release.
    Gu C; Zhang X; Ewing AG
    Anal Chem; 2020 Aug; 92(15):10268-10273. PubMed ID: 32628468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative chemical analysis of single cells.
    Heien ML; Ewing AG
    Methods Mol Biol; 2009; 544():153-62. PubMed ID: 19488699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-layer graphene-coated gold chip for electrochemical surface plasmon resonance study.
    Mei Y; Zhong C; Li L; Nong J; Wei W; Hu W
    Anal Bioanal Chem; 2019 Jul; 411(19):4577-4585. PubMed ID: 30450508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-ring microelectrode arrays for electrochemical imaging of single cell exocytosis: fabrication and characterization.
    Lin Y; Trouillon R; Svensson MI; Keighron JD; Cans AS; Ewing AG
    Anal Chem; 2012 Mar; 84(6):2949-54. PubMed ID: 22339586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroless deposition of gold nanoparticles on carbon nanopipette electrode for electrochemical detection of catecholamines released from PC12 cells.
    Qi H; Song J; Zhang M; Tian S; Qi H
    Mikrochim Acta; 2020 Oct; 187(11):595. PubMed ID: 33033924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Synapse: Spatiotemporal Heterogeneities in Dopamine Electrochemistry at a Carbon Fiber Ultramicroelectrode.
    Chen B; Perry D; Teahan J; McPherson IJ; Edmondson J; Kang M; Valavanis D; Frenguelli BG; Unwin PR
    ACS Meas Sci Au; 2021 Aug; 1(1):6-10. PubMed ID: 36785735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells.
    Spégel C; Heiskanen A; Pedersen S; Emnéus J; Ruzgas T; Taboryski R
    Lab Chip; 2008 Feb; 8(2):323-9. PubMed ID: 18231673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Dimensional Surface Plasmon Resonance Imaging System for Cellular Analysis.
    Mir TA; Shinohara H
    Methods Mol Biol; 2017; 1571():31-46. PubMed ID: 28281248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial resolution of single-cell exocytosis by microwell-based individually addressable thin film ultramicroelectrode arrays.
    Wang J; Trouillon R; Dunevall J; Ewing AG
    Anal Chem; 2014 May; 86(9):4515-20. PubMed ID: 24712854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical monitoring of individual exocytotic events from the varicosities of differentiated PC12 cells.
    Zerby SE; Ewing AG
    Brain Res; 1996 Mar; 712(1):1-10. PubMed ID: 8705289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwell device for targeting single cells to electrochemical microelectrodes for high-throughput amperometric detection of quantal exocytosis.
    Liu X; Barizuddin S; Shin W; Mathai CJ; Gangopadhyay S; Gillis KD
    Anal Chem; 2011 Apr; 83(7):2445-51. PubMed ID: 21355543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.