These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38867491)
1. To Investigate the Changes in Corneal Curvature and Its Correlation with Corneal Epithelial Remodeling After Trans-PRK and FS-LASIK. Yang F; Yang Z; Zhao S; Huang Y Curr Eye Res; 2024 Oct; 49(10):1061-1067. PubMed ID: 38867491 [TBL] [Abstract][Full Text] [Related]
2. Longitudinal evaluation of posterior corneal elevation after laser refractive surgery using swept-source optical coherence tomography. Chan TC; Liu D; Yu M; Jhanji V Ophthalmology; 2015 Apr; 122(4):687-92. PubMed ID: 25487425 [TBL] [Abstract][Full Text] [Related]
3. Changes in Posterior Cornea and Posterior-To-Anterior Curvature Radii Ratio 1 Year After LASIK, PRK, and SMILE Treatment of Myopia. Moshirfar M; Cha DS; Santos JM; Herron MS; Hoopes PC Cornea; 2024 Aug; 43(8):950-954. PubMed ID: 38561842 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the change in retinal thickness after femtosecond laser-assisted laser in situ keratomileusis and photorefractive keratectomy. Ozsaygili C; Altunel O; Duru N Curr Eye Res; 2022 Jan; 47(1):18-24. PubMed ID: 34231433 [TBL] [Abstract][Full Text] [Related]
5. Longitudinal and Regional Non-uniform Remodeling of Corneal Epithelium After Topography-Guided FS-LASIK. Fan L; Xiong L; Zhang B; Wang Z J Refract Surg; 2019 Feb; 35(2):88-95. PubMed ID: 30742222 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Corneal Epithelial Remodeling After Femtosecond Laser-Assisted LASIK and Small Incision Lenticule Extraction (SMILE). Ryu IH; Kim BJ; Lee JH; Kim SW J Refract Surg; 2017 Apr; 33(4):250-256. PubMed ID: 28407165 [TBL] [Abstract][Full Text] [Related]
7. Corneal Epithelial Remodeling Following Cylinder Correction With SMILE or FS-LASIK: A Contralateral Comparative Study. Chen P; Hou X; Yu N; Ye Y; Wei H; Zhuang J; Yu K J Refract Surg; 2024 Oct; 40(10):e728-e741. PubMed ID: 39387380 [TBL] [Abstract][Full Text] [Related]
8. Predictors affecting myopic regression in - 6.0D to - 10.0D myopia after laser-assisted subepithelial keratomileusis and laser in situ keratomileusis flap creation with femtosecond laser-assisted or mechanical microkeratome-assisted. Zhou J; Gu W; Li S; Wu L; Gao Y; Guo X Int Ophthalmol; 2020 Jan; 40(1):213-225. PubMed ID: 31571091 [TBL] [Abstract][Full Text] [Related]
9. Study of corneal and retinal thicknesses at five years after FS-LASIK and SMILE for myopia. Li J; Qin J; Lv X; Xu Y; Jiang D; Yuan M; Sun M; Zhang F BMC Ophthalmol; 2024 Sep; 24(1):396. PubMed ID: 39237938 [TBL] [Abstract][Full Text] [Related]
10. Femtosecond laser assisted in situ keratomileusis (FS-LASIK) yields better results than transepithelial photorefractive keratectomy (Trans-PRK) for correction of low to moderate grade myopia. Gershoni A; Reitblat O; Mimouni M; Livny E; Nahum Y; Bahar I Eur J Ophthalmol; 2021 Nov; 31(6):2914-2922. PubMed ID: 33307790 [TBL] [Abstract][Full Text] [Related]
11. Repeatability of Cornea and Sublayer Thickness Measurements Using Optical Coherence Tomography in Corneas of Anomalous Refractive Status. Lu NJ; Chen D; Cui LL; Wang L; Chen SH; Wang QM J Refract Surg; 2019 Sep; 35(9):600-605. PubMed ID: 31498418 [TBL] [Abstract][Full Text] [Related]
12. Changes in central corneal thickness after laser in situ keratomileusis and photorefractive keratectomy. Kozak I; Hornak M; Juhas T; Shah A; Rawlings EF J Refract Surg; 2003; 19(2):149-53. PubMed ID: 12701720 [TBL] [Abstract][Full Text] [Related]
13. Corneal power, thickness, and stiffness: results of a prospective randomized controlled trial of PRK and LASIK for myopia. Hjortdal JØ; Møller-Pedersen T; Ivarsen A; Ehlers N J Cataract Refract Surg; 2005 Jan; 31(1):21-9. PubMed ID: 15721693 [TBL] [Abstract][Full Text] [Related]
14. Corneal curvature, asphericity, and aberrations after transepithelial photorefractive keratectomy and femtosecond laser-assisted Zhang YL; Xu XH; Cao LJ; Liu L Indian J Ophthalmol; 2020 Dec; 68(12):2945-2949. PubMed ID: 33229675 [TBL] [Abstract][Full Text] [Related]
15. Comparison of clinical results between trans-PRK and femtosecond LASIK for correction of high myopia. Zhang J; Feng Q; Ding W; Peng Y; Long K BMC Ophthalmol; 2020 Jun; 20(1):243. PubMed ID: 32560634 [TBL] [Abstract][Full Text] [Related]
16. Factors that influence intraocular pressure changes after myopic and hyperopic LASIK and photorefractive keratectomy: a large population study. Schallhorn JM; Schallhorn SC; Ou Y Ophthalmology; 2015 Mar; 122(3):471-9. PubMed ID: 25444636 [TBL] [Abstract][Full Text] [Related]
17. Visual outcomes after Epi-LASIK and PRK for low and moderate myopia. Sia RK; Coe CD; Edwards JD; Ryan DS; Bower KS J Refract Surg; 2012 Jan; 28(1):65-71. PubMed ID: 21985667 [TBL] [Abstract][Full Text] [Related]
18. Spectral-domain optical coherence tomography epithelial and flap thickness mapping in femtosecond laser-assisted in situ keratomileusis. Rocha KM; Krueger RR Am J Ophthalmol; 2014 Aug; 158(2):293-301.e1. PubMed ID: 24792107 [TBL] [Abstract][Full Text] [Related]
19. Optical quality after myopic photorefractive keratectomy and laser in situ keratomileusis: comparison using a double-pass system. Ondategui JC; Vilaseca M; Arjona M; Montasell A; Cardona G; Güell JL; Pujol J J Cataract Refract Surg; 2012 Jan; 38(1):16-27. PubMed ID: 22153091 [TBL] [Abstract][Full Text] [Related]