BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38867734)

  • 1. DeepKla: An attention mechanism-based deep neural network for protein lysine lactylation site prediction.
    Lv H; Dao FY; Lin H
    Imeta; 2022 Mar; 1(1):e11. PubMed ID: 38867734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactylation prediction models based on protein sequence and structural feature fusion.
    Yang YH; Yang JT; Liu JF
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38385873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FSL-Kla: A few-shot learning-based multi-feature hybrid system for lactylation site prediction.
    Jiang P; Ning W; Shi Y; Liu C; Mo S; Zhou H; Liu K; Guo Y
    Comput Struct Biotechnol J; 2021; 19():4497-4509. PubMed ID: 34471495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auto-Kla: a novel web server to discriminate lysine lactylation sites using automated machine learning.
    Lai FL; Gao F
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-Kcr: accurate detection of lysine crotonylation sites using deep learning method.
    Lv H; Dao FY; Guan ZX; Yang H; Li YW; Lin H
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33099604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepIPs: comprehensive assessment and computational identification of phosphorylation sites of SARS-CoV-2 infection using a deep learning-based approach.
    Lv H; Dao FY; Zulfiqar H; Lin H
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34184738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic Analysis of Lysine Lactylation in the Plant Fungal Pathogen
    Gao M; Zhang N; Liang W
    Front Microbiol; 2020; 11():594743. PubMed ID: 33193272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the effect of protein lysine lactylation modification in macrophages on inhibiting periodontitis in rats.
    Liu X; Wang J; Lao M; Liu F; Zhu H; Man K; Zhang J
    J Periodontol; 2024 Jan; 95(1):50-63. PubMed ID: 37436722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning.
    Chen YZ; Wang ZZ; Wang Y; Ying G; Chen Z; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34002774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deepro-Glu: combination of convolutional neural network and Bi-LSTM models using ProtBert and handcrafted features to identify lysine glutarylation sites.
    Wang X; Ding Z; Wang R; Lin X
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36653898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic patterns of histone lactylation during early tooth development in mice.
    Liu M; Yang Q; Zuo H; Zhang X; Mishina Y; Chen Z; Yang J
    J Mol Histol; 2023 Dec; 54(6):665-673. PubMed ID: 37787911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global profiling of lysine lactylation in human lungs.
    Yang YH; Wang QC; Kong J; Yang JT; Liu JF
    Proteomics; 2023 Aug; 23(15):e2200437. PubMed ID: 37170646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CNN6mA: Interpretable neural network model based on position-specific CNN and cross-interactive network for 6mA site prediction.
    Tsukiyama S; Hasan MM; Kurata H
    Comput Struct Biotechnol J; 2023; 21():644-654. PubMed ID: 36659917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MMGAT: a graph attention network framework for ATAC-seq motifs finding.
    Wu X; Hou W; Zhao Z; Huang L; Sheng N; Yang Q; Zhang S; Wang Y
    BMC Bioinformatics; 2024 Apr; 25(1):158. PubMed ID: 38643066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating Deep Learning With Word Embedding to Identify Plant Ubiquitylation Sites.
    Wang H; Wang Z; Li Z; Lee TY
    Front Cell Dev Biol; 2020; 8():572195. PubMed ID: 33102477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Profiling of Lysine Acetylation and Lactylation in Kupffer Cells.
    Sung E; Sim H; Cho YC; Lee W; Bae JS; Tan M; Lee S
    J Proteome Res; 2023 Dec; 22(12):3683-3691. PubMed ID: 37897433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Proteomic Analysis Reveals the Effect of Protein Lactylation on Matrix and Cholesterol Metabolism in Tendinopathy.
    Lin Y; Chen M; Wang D; Yu Y; Chen R; Zhang M; Yu H; Huang X; Rao M; Wang Y; Li Y; Yan J; Yin P
    J Proteome Res; 2023 Jun; 22(6):1712-1722. PubMed ID: 37159428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IPs-GRUAtt: An attention-based bidirectional gated recurrent unit network for predicting phosphorylation sites of SARS-CoV-2 infection.
    Zhang G; Tang Q; Feng P; Chen W
    Mol Ther Nucleic Acids; 2023 Jun; 32():28-35. PubMed ID: 36908648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.