BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38867734)

  • 21. PhosIDN: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein-protein interaction information.
    Yang H; Wang M; Liu X; Zhao XM; Li A
    Bioinformatics; 2021 Dec; 37(24):4668-4676. PubMed ID: 34320631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ubiquitous protein lactylation in health and diseases.
    Wang J; Wang Z; Wang Q; Li X; Guo Y
    Cell Mol Biol Lett; 2024 Feb; 29(1):23. PubMed ID: 38317138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The characterization of protein lactylation in relation to cardiac metabolic reprogramming in neonatal mouse hearts.
    Zhang T; Zhu Y; Wang X; Chong D; Wang H; Bu D; Zhao M; Fang L; Li C
    J Genet Genomics; 2024 Mar; ():. PubMed ID: 38479452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DeepGpgs: a novel deep learning framework for predicting arginine methylation sites combined with Gaussian prior and gated self-attention mechanism.
    Zhou H; Tan W; Shi S
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36694944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lysine lactylation regulates metabolic pathways and biofilm formation in
    Li Z; Gong T; Wu Q; Zhang Y; Zheng X; Li Y; Ren B; Peng X; Zhou X
    Sci Signal; 2023 Sep; 16(801):eadg1849. PubMed ID: 37669396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. i5mC-DCGA: an improved hybrid network framework based on the CBAM attention mechanism for identifying promoter 5mC sites.
    Jia J; Lei R; Qin L; Wei X
    BMC Genomics; 2024 Mar; 25(1):242. PubMed ID: 38443802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved Prediction Model of Protein Lysine Crotonylation Sites Using Bidirectional Recurrent Neural Networks.
    Tng SS; Le NQK; Yeh HY; Chua MCH
    J Proteome Res; 2022 Jan; 21(1):265-273. PubMed ID: 34812044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MVNN-HNHC:A multi-view neural network for identification of human non-histone crotonylation sites.
    Gao J; Zhao Y; Chen C; Ning Q
    Anal Biochem; 2024 Apr; 687():115426. PubMed ID: 38141798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-scale prediction of protein ubiquitination sites using a multimodal deep architecture.
    He F; Wang R; Li J; Bao L; Xu D; Zhao X
    BMC Syst Biol; 2018 Nov; 12(Suppl 6):109. PubMed ID: 30463553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lysine lactylation (Kla) might be a novel therapeutic target for breast cancer.
    Deng J; Liao X
    BMC Med Genomics; 2023 Nov; 16(1):283. PubMed ID: 37950222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DeepLncLoc: a deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding.
    Zeng M; Wu Y; Lu C; Zhang F; Wu FX; Li M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34498677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep_KsuccSite: A novel deep learning method for the identification of lysine succinylation sites.
    Liu X; Xu LL; Lu YP; Yang T; Gu XY; Wang L; Liu Y
    Front Genet; 2022; 13():1007618. PubMed ID: 36246655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein-protein interaction site prediction through combining local and global features with deep neural networks.
    Zeng M; Zhang F; Wu FX; Li Y; Wang J; Li M
    Bioinformatics; 2020 Feb; 36(4):1114-1120. PubMed ID: 31593229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-aware protein-protein interaction site prediction using deep graph convolutional network.
    Yuan Q; Chen J; Zhao H; Zhou Y; Yang Y
    Bioinformatics; 2021 Dec; 38(1):125-132. PubMed ID: 34498061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systematic identification of the lysine lactylation in the protozoan parasite Toxoplasma gondii.
    Zhao W; Yu H; Liu X; Wang T; Yao Y; Zhou Q; Zheng X; Tan F
    Parasit Vectors; 2022 May; 15(1):180. PubMed ID: 35610722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DeepCap-Kcr: accurate identification and investigation of protein lysine crotonylation sites based on capsule network.
    Khanal J; Tayara H; Zou Q; To Chong K
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34882222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global-Scale Profiling of Differential Expressed Lysine-Lactylated Proteins in the Cerebral Endothelium of Cerebral Ischemia-Reperfusion Injury Rats.
    Yao Y; Bade R; Li G; Zhang A; Zhao H; Fan L; Zhu R; Yuan J
    Cell Mol Neurobiol; 2023 Jul; 43(5):1989-2004. PubMed ID: 36030297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. YiaC and CobB regulate lysine lactylation in Escherichia coli.
    Dong H; Zhang J; Zhang H; Han Y; Lu C; Chen C; Tan X; Wang S; Bai X; Zhai G; Tian S; Zhang T; Cheng Z; Li E; Xu L; Zhang K
    Nat Commun; 2022 Nov; 13(1):6628. PubMed ID: 36333310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of lysine-lactylated substrates in gastric cancer cells.
    Yang D; Yin J; Shan L; Yi X; Zhang W; Ding Y
    iScience; 2022 Jul; 25(7):104630. PubMed ID: 35800753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.