BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38867776)

  • 1. Quantitative phase image stitching guided by reconstructed intensity images in one-shot double field of view multiplexed digital holographic microscopy.
    Chen B; Gao H; Huang L; Yan L; Lou Y; Fu X
    Biomed Opt Express; 2024 Jun; 15(6):3727-3742. PubMed ID: 38867776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-shot off-axis digital holographic system with extended field-of-view by using multiplexing method.
    Kumar M; Pensia L; Kumar R
    Sci Rep; 2022 Sep; 12(1):16462. PubMed ID: 36180504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical criterion for focusing of unstained cell samples using a digital holographic microscope.
    Malik R; Sharma P; Poulose S; Ahlawat S; Khare K
    J Microsc; 2020 Aug; 279(2):114-122. PubMed ID: 32441768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated stitching of microscope images of fluorescence in cells with minimal overlap.
    Seo JH; Yang S; Kang MS; Her NG; Nam DH; Choi JH; Kim MH
    Micron; 2019 Nov; 126():102718. PubMed ID: 31473399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy.
    Charrière F; Colomb T; Montfort F; Cuche E; Marquet P; Depeursinge C
    Appl Opt; 2006 Oct; 45(29):7667-73. PubMed ID: 17068602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy.
    Doblas A; Sánchez-Ortiga E; Martínez-Corral M; Saavedra G; Garcia-Sucerquia J
    J Biomed Opt; 2014 Apr; 19(4):046022. PubMed ID: 24781590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-shot wide-field topography measurement using spectrally multiplexed reflection intensity holography via space-domain Kramers-Kronig relations.
    Lee C; Baek Y; Hugonnet H; Park Y
    Opt Lett; 2022 Mar; 47(5):1025-1028. PubMed ID: 35230281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of field of view size on image quality: ultra-high-resolution CT vs. conventional high-resolution CT.
    Miyata T; Yanagawa M; Hata A; Honda O; Yoshida Y; Kikuchi N; Tsubamoto M; Tsukagoshi S; Uranishi A; Tomiyama N
    Eur Radiol; 2020 Jun; 30(6):3324-3333. PubMed ID: 32072253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial multiplexing and autofocus in holographic contouring for inspection of micro-parts.
    Agour M; Falldorf C; Bergmann RB
    Opt Express; 2018 Oct; 26(22):28576-28588. PubMed ID: 30470032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Live Cell Imaging by Single-Shot Common-Path Wide Field-of-View Reflective Digital Holographic Microscope.
    Kumar M; Murata T; Matoba O
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image enhancement and field of view enlargement in digital lensless holographic microscopy by multi-shot imaging.
    Zapata-Valencia SI; Tobon-Maya H; Garcia-Sucerquia J
    J Opt Soc Am A Opt Image Sci Vis; 2023 Apr; 40(4):C150-C156. PubMed ID: 37132985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube.
    Picazo-Bueno JA; Trusiak M; Micó V
    Opt Express; 2019 Feb; 27(4):5655-5669. PubMed ID: 30876163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Shot 3D Topography of Transmissive and Reflective Samples with a Dual-Mode Telecentric-Based Digital Holographic Microscope.
    Doblas A; Hayes-Rounds C; Isaac R; Perez F
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common-path digital holographic microscopy based on a volume holographic grating for quantitative phase imaging.
    Tsai CM; Vyas S; Luo Y
    Opt Express; 2024 Feb; 32(5):7919-7930. PubMed ID: 38439461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing.
    Girshovitz P; Frenklach I; Shaked NT
    J Biomed Opt; 2015 Nov; 20(11):111217. PubMed ID: 26440914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Color imaging-in-flow by digital holographic microscopy with permanent defect and aberration corrections.
    Dohet-Eraly J; Yourassowsky C; Dubois F
    Opt Lett; 2014 Oct; 39(20):6070-3. PubMed ID: 25361158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal structured illumination and vision-transformer enables large field-of-view binary snapshot ptychography.
    Chen Z; Zheng S; Wang W; Song J; Yuan X
    Opt Express; 2024 Jan; 32(2):1540-1551. PubMed ID: 38297703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-shot soft-x-ray digital holographic microscopy with an adjustable field of view and magnification.
    Chou MC; Huang RP; Lin PH; Huang CT; Chen SY; Chu HH; Wang J; Lin JY
    Opt Lett; 2009 Mar; 34(5):623-5. PubMed ID: 19252572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Video-Rate Quantitative Phase Imaging Using a Digital Holographic Microscope and a Generative Adversarial Network.
    Castaneda R; Trujillo C; Doblas A
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DL-SI-DHM: a deep network generating the high-resolution phase and amplitude images from wide-field images.
    Meng Z; Pedrini G; Lv X; Ma J; Nie S; Yuan C
    Opt Express; 2021 Jun; 29(13):19247-19261. PubMed ID: 34266038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.