These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 38868826)
1. Efficient cationic dye removal from water through Sharma A; Shivanna JM; Alodhayb AN; Hegde G Nanoscale Adv; 2024 Jun; 6(12):3199-3210. PubMed ID: 38868826 [TBL] [Abstract][Full Text] [Related]
2. Biowaste-Derived, Highly Efficient, Reusable Carbon Nanospheres for Speedy Removal of Organic Dyes from Aqueous Solutions. Krishnappa B; Bhat VS; Ancy V; Joshi JC; S JM; Naik M; Hegde G Molecules; 2022 Oct; 27(20):. PubMed ID: 36296613 [TBL] [Abstract][Full Text] [Related]
3. Garlic peel based mesoporous carbon nanospheres for an effective removal of malachite green dye from aqueous solutions: Detailed isotherms and kinetics. Pathania D; Bhat VS; Mannekote Shivanna J; Sriram G; Kurkuri M; Hegde G Spectrochim Acta A Mol Biomol Spectrosc; 2022 Aug; 276():121197. PubMed ID: 35381439 [TBL] [Abstract][Full Text] [Related]
4. Cost effective porous areca nut carbon nanospheres for adsorptive removal of dyes and their binary mixtures. Pathania D; Araballi A; Fernandes F; Shivanna JM; Sriram G; Kurkuri M; Hegde G; Aminabhavi TM Environ Res; 2023 May; 224():115521. PubMed ID: 36805895 [TBL] [Abstract][Full Text] [Related]
5. Response surface methodology for optimizing methylene blue dye removal by mesoporous activated carbon derived from renewable woody Jawad AH; Abdulhameed AS; Khadiran T; ALOthman ZA; Wilson LD; Algburi S Int J Phytoremediation; 2024; 26(5):727-739. PubMed ID: 37817463 [TBL] [Abstract][Full Text] [Related]
6. Experimental investigation of H Waghmare C; Ghodmare S; Ansari K; Dehghani MH; Amir Khan M; Hasan MA; Islam S; Khan NA; Zahmatkesh S J Environ Manage; 2023 Nov; 345():118815. PubMed ID: 37633104 [TBL] [Abstract][Full Text] [Related]
7. Optimization and mechanistic approach for removal of crystal violet and methylene blue dyes Hapiz A; Jawad AH; Wilson LD; ALOthman ZA; Abdulhameed AS; Algburi S Int J Phytoremediation; 2024; 26(4):579-593. PubMed ID: 37740456 [TBL] [Abstract][Full Text] [Related]
8. Selective adsorption of cationic dye by κ-carrageenan-potato starch bio-hydrogel: Kinetics, isotherm, and thermodynamic studies. Radoor S; Kassahun SK; Kim H Int J Biol Macromol; 2024 Nov; 281(Pt 2):136377. PubMed ID: 39383908 [TBL] [Abstract][Full Text] [Related]
9. High surface area activated carbon from a pineapple ( Hapiz A; Jawad AH; Wilson LD; ALOthman ZA Int J Phytoremediation; 2024 Feb; 26(3):324-338. PubMed ID: 37545130 [TBL] [Abstract][Full Text] [Related]
10. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye. Zhao DH; Gao HW Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103 [TBL] [Abstract][Full Text] [Related]
11. Rapid Removal of Toxic Remazol Brilliant Blue-R Dye from Aqueous Solutions Using Parimelazhagan V; Yashwath P; Arukkani Pushparajan D; Carpenter J Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293336 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous removal of cationic methylene blue and anionic reactive red 198 dyes using magnetic activated carbon nanoparticles: equilibrium, and kinetics analysis. Abuzerr S; Darwish M; Mahvi AH Water Sci Technol; 2018 May; 2017(2):534-545. PubMed ID: 29851406 [TBL] [Abstract][Full Text] [Related]
14. Adsorption of anionic and cationic dyes on ferromagnetic ordered mesoporous carbon from aqueous solution: equilibrium, thermodynamic and kinetics. Peng X; Huang D; Odoom-Wubah T; Fu D; Huang J; Qin Q J Colloid Interface Sci; 2014 Sep; 430():272-82. PubMed ID: 24973701 [TBL] [Abstract][Full Text] [Related]
15. The Use of High Surface Area Mesoporous-Activated Carbon from Longan Seed Biomass for Increasing Capacity and Kinetics of Methylene Blue Adsorption from Aqueous Solution. Lawtae P; Tangsathitkulchai C Molecules; 2021 Oct; 26(21):. PubMed ID: 34770928 [TBL] [Abstract][Full Text] [Related]
16. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle. Ghaedi M; Zeinali N; Ghaedi AM; Teimuori M; Tashkhourian J Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():264-77. PubMed ID: 24556135 [TBL] [Abstract][Full Text] [Related]
17. Activated carbon-alginate beads impregnated with surfactant as sustainable adsorbent for efficient removal of methylene blue. Alamin NU; Khan AS; Nasrullah A; Iqbal J; Ullah Z; Din IU; Muhammad N; Khan SZ Int J Biol Macromol; 2021 Apr; 176():233-243. PubMed ID: 33549668 [TBL] [Abstract][Full Text] [Related]
18. Natural kaolinite-based hierarchical porous microspheres as effective and highly recyclable adsorbent for removal of cationic dyes. Zhang Q; Wang J; Zhang Y; Chen J Environ Sci Pollut Res Int; 2022 Oct; 29(47):72001-72016. PubMed ID: 35606589 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the valorization of pulping black liquors in production effective aerogel-carbon nanostructure as adsorbents toward cationic and ionic dyes. Lotfy VF; Basta AH Sci Rep; 2024 Jul; 14(1):15236. PubMed ID: 38956097 [TBL] [Abstract][Full Text] [Related]
20. Removal of Cationic Dyes by Iron Modified Silica/Polyurethane Composite: Kinetic, Isotherm and Thermodynamic Analyses, and Regeneration via Advanced Oxidation Process. Ahmad A; Jamil SNAM; Choong TSY; Abdullah AH; Faujan NH; Adeyi AA; Daik R; Othman N Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]