These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38868834)

  • 1. Low-threshold cavity-enhanced superfluorescence in polyhedral quantum dot superparticles.
    Li X; Chen L; Mao D; Li J; Xie W; Dong H; Zhang L
    Nanoscale Adv; 2024 Jun; 6(12):3220-3228. PubMed ID: 38868834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable and Ultrafast Blue Cavity-Enhanced Superfluorescence in Mixed Halide Perovskites.
    Chen L; Mao D; Hu Y; Dong H; Zhong Y; Xie W; Mou N; Li X; Zhang L
    Adv Sci (Weinh); 2023 Jul; 10(21):e2301589. PubMed ID: 37127890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superstructures generated from truncated tetrahedral quantum dots.
    Nagaoka Y; Tan R; Li R; Zhu H; Eggert D; Wu YA; Liu Y; Wang Z; Chen O
    Nature; 2018 Sep; 561(7723):378-382. PubMed ID: 30232427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency Stabilization and Optically Tunable Lasing in Colloidal Quantum Dot Superparticles.
    Neuhaus SJ; Marino E; Murray CB; Kagan CR
    Nano Lett; 2023 Jan; 23(2):645-651. PubMed ID: 36602545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of transition from superfluorescence to polariton condensation in CsPbBr
    Mao D; Chen L; Sun Z; Zhang M; Shi ZY; Hu Y; Zhang L; Wu J; Dong H; Xie W; Xu H
    Light Sci Appl; 2024 Jan; 13(1):34. PubMed ID: 38291038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Nanowire-Based Plasmonic Quantum Dot Laser.
    Ho J; Tatebayashi J; Sergent S; Fong CF; Ota Y; Iwamoto S; Arakawa Y
    Nano Lett; 2016 Apr; 16(4):2845-50. PubMed ID: 27030886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorescent polymeric quantum dot/aptamer superstructure and its application for imaging of cancer cells.
    Jie G; Zhao Y; Qin Y
    Chem Asian J; 2014 May; 9(5):1261-4. PubMed ID: 24616365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand Engineering and Recrystallization of Perovskite Quantum-Dot Thin Film for Low-Threshold Plasmonic Lattice Laser.
    Xing D; Lin CC; Ho YL; Lee YC; Chen MH; Lin BW; Chen CW; Delaunay JJ
    Small; 2022 Nov; 18(44):e2204070. PubMed ID: 36123147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Dot Self-Assembly Enables Low-Threshold Lasing.
    Zhou C; M Pina J; Zhu T; H Parmar D; Chang H; Yu J; Yuan F; Bappi G; Hou Y; Zheng X; Abed J; Chen H; Zhang J; Gao Y; Chen B; Wang YK; Chen H; Zhang T; Hoogland S; Saidaminov MI; Sun L; Bakr OM; Dong H; Zhang L; H Sargent E
    Adv Sci (Weinh); 2021 Oct; 8(20):e2101125. PubMed ID: 34449133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of Nano-superstructures and Their Optical Properties.
    Qi F; Jeong KJ; Gong J; Tang Z
    Acc Chem Res; 2022 Sep; 55(17):2425-2438. PubMed ID: 35977155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radioluminescent Cu-Au Metal Nanoclusters: Synthesis and Self-Assembly for Efficient X-ray Scintillation and Imaging.
    Huang RW; Song X; Chen S; Yin J; Maity P; Wang J; Shao B; Zhu H; Dong C; Yuan P; Ahmad T; Mohammed OF; Bakr OM
    J Am Chem Soc; 2023 Jun; 145(25):13816-13827. PubMed ID: 37335564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembly of Polyoxometalate-Based Sub-1 nm Polyhedral Building Blocks into Rhombic Dodecahedral Superstructures.
    Wang T; Chen W; Liu Q; Wang W; Wang Y; Wu B; Shi W; Zhu Y; He P; Wang X
    Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202314045. PubMed ID: 37916968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled quantum dot structures in a hexagonal nanowire for quantum photonics.
    Yu Y; Dou XM; Wei B; Zha GW; Shang XJ; Wang L; Su D; Xu JX; Wang HY; Ni HQ; Sun BQ; Ji Y; Han XD; Niu ZC
    Adv Mater; 2014 May; 26(17):2710-7, 2616. PubMed ID: 24677451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perovskite Quantum Dot Lasing in a Gap-Plasmon Nanocavity with Ultralow Threshold.
    Hsieh YH; Hsu BW; Peng KN; Lee KW; Chu CW; Chang SW; Lin HW; Yen TJ; Lu YJ
    ACS Nano; 2020 Sep; 14(9):11670-11676. PubMed ID: 32701270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal-Quantum-Dot Ring Lasers with Active Color Control.
    le Feber B; Prins F; De Leo E; Rabouw FT; Norris DJ
    Nano Lett; 2018 Feb; 18(2):1028-1034. PubMed ID: 29283266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Emitting Transistors with High Color Purity Using Perovskite Quantum Dot Emitters.
    Park YJ; Kim M; Song A; Kim JY; Chung KB; Walker B; Seo JH; Wang DH
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35175-35180. PubMed ID: 32805794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Quantum Dot Light-Emitting Diodes Based on Trioctylphosphine Oxide-Passivated Organometallic Halide Perovskites.
    Yao Y; Yu H; Wu Y; Lu Y; Liu Z; Xu X; Ma B; Zhang Q; Chen S; Huang W
    ACS Omega; 2019 May; 4(5):9150-9159. PubMed ID: 31460003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-mode lasing from colloidal water-soluble CdSe/CdS quantum dot-in-rods.
    Di Stasio F; Grim JQ; Lesnyak V; Rastogi P; Manna L; Moreels I; Krahne R
    Small; 2015 Mar; 11(11):1328-34. PubMed ID: 25335769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in optical characteristics induced by polymer blending in printed colloidal quantum dots microlasers.
    Wan L; Chen C; Zhu J; Nasir KTA; Cui Q; Chen Z; Yoshioka H; Liu W; Oki Y; Li Z
    Opt Express; 2019 Jul; 27(14):19615-19623. PubMed ID: 31503718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.