These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38868998)

  • 21. A SERS-based capillary sensor for the detection of mercury ions in environmental water.
    Zhao Y; Yamaguchi Y; Ni Y; Li M; Dou X
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 233():118193. PubMed ID: 32135502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants.
    Song D; Yang R; Long F; Zhu A
    J Environ Sci (China); 2019 Jun; 80():14-34. PubMed ID: 30952332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors.
    Guo X; Li J; Arabi M; Wang X; Wang Y; Chen L
    ACS Sens; 2020 Mar; 5(3):601-619. PubMed ID: 32072805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasensitive Au Nanooctahedron Micropinball Sensor for Mercury Ions.
    Duan Z; Zhang X; Ye T; Zhang X; Dong S; Liu J; Xiao X; Jiang C
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25737-25743. PubMed ID: 29978695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strategies and Challenges of Identifying Nanoplastics in Environment by Surface-Enhanced Raman Spectroscopy.
    Xie L; Gong K; Liu Y; Zhang L
    Environ Sci Technol; 2023 Jan; 57(1):25-43. PubMed ID: 36576086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensitive and Selective Detection of Mercury Ions in Aqueous Media Using an Oligonucleotide-functionalized Nanosensor and SERS Chip.
    Zou Q; Li X; Xue T; Mo S; Su Q; Zheng J
    Anal Sci; 2019 May; 35(5):493-498. PubMed ID: 30298820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Trends and Future Perspectives of Emergent Analytical Techniques for Mercury Sensing in Aquatic Environments.
    Ali S; Mansha M; Baig N; Khan SA
    Chem Rec; 2022 Jul; 22(7):e202100327. PubMed ID: 35253977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel ratiometric surface-enhanced raman spectroscopy aptasensor for sensitive and reproducible sensing of Hg
    Wu Y; Jiang T; Wu Z; Yu R
    Biosens Bioelectron; 2018 Jan; 99():646-652. PubMed ID: 28843197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Situ Microfluidic SERS Chip for Ultrasensitive Hg
    Zhang H; Wang D; Zhang D; Zhang T; Yang L; Li Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2211-2218. PubMed ID: 34964597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and Application of Aptamer-Based Surface-Enhanced Raman Spectroscopy Sensors in Quantitative Analysis and Biotherapy.
    Wang HX; Zhao YW; Li Z; Liu BS; Zhang D
    Sensors (Basel); 2019 Sep; 19(17):. PubMed ID: 31484403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond.
    Bruzas I; Lum W; Gorunmez Z; Sagle L
    Analyst; 2018 Aug; 143(17):3990-4008. PubMed ID: 30059080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flower-like Ag coated with molecularly imprinted polymers as a surface-enhanced Raman scattering substrate for the sensitive and selective detection of glibenclamide.
    Ren X; Li X
    Anal Methods; 2020 Jun; 12(22):2858-2864. PubMed ID: 32930209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and application of ion-imprinted polymer for the determination of mercury II in water samples.
    Francisco JE; Feiteira FN; da Silva WA; Pacheco WF
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19588-19597. PubMed ID: 31077054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly selective monitoring of metals by using ion-imprinted polymers.
    Hande PE; Samui AB; Kulkarni PS
    Environ Sci Pollut Res Int; 2015 May; 22(10):7375-404. PubMed ID: 25663338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applications of surface-enhanced Raman spectroscopy based on portable Raman spectrometers: A review of recent developments.
    Wang W; Ma P; Song D
    Luminescence; 2022 Nov; 37(11):1822-1835. PubMed ID: 36098329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silver Nanoparticle Films Obtained by Convective Self-Assembly for Surface-Enhanced Raman Spectroscopy Analyses of the Pesticides Thiabendazole and Endosulfan.
    Brezestean IA; Tosa N; Falamas A; Cuibus D; Muntean CM; Bende A; Cozar B; Berghian-Grosan C; Farcău C
    Front Chem; 2022; 10():915337. PubMed ID: 35844660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface-enhanced Raman scattering based determination on sulfamethazine using molecularly imprinted polymers decorated with silver nanoparticles.
    Jiang GY; Liu L; Wan YQ; Li JK; Pi FW
    Mikrochim Acta; 2023 Apr; 190(5):169. PubMed ID: 37016038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detect, remove and reuse: a new paradigm in sensing and removal of Hg (II) from wastewater via SERS-active ZnO/Ag nanoarrays.
    Esmaielzadeh Kandjani A; Sabri YM; Mohammad-Taheri M; Bansal V; Bhargava SK
    Environ Sci Technol; 2015 Feb; 49(3):1578-84. PubMed ID: 25407243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination?
    Panneerselvam R; Sadat H; Höhn EM; Das A; Noothalapati H; Belder D
    Lab Chip; 2022 Feb; 22(4):665-682. PubMed ID: 35107464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tetrahedral DNA-directed core-satellite assembly as SERS sensor for mercury ions at the single-particle level.
    Feng N; Shen J; Li C; Zhao Q; Fodjo EK; Zhang L; Chen S; Fan Q; Wang L
    Analyst; 2022 May; 147(9):1866-1872. PubMed ID: 35412538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.