These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 38869099)

  • 1. Cathode Electrolyte Interphase Engineering for Prussian Blue Analogues in Lithium-Ion Batteries.
    Wi TU; Park C; Ko S; Kim T; Choi A; Muralidharan V; Choi M; Lee HW
    Nano Lett; 2024 Jun; 24(25):7783-7791. PubMed ID: 38869099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interphase Engineering for Stabilizing Ni-Rich Cathode in Lithium-Ion Batteries by a Nucleophilic Reaction-Based Additive.
    Zheng WC; Huang Z; Shi CG; Deng Y; Wen ZH; Li Z; Chen H; Chen Z; Huang L; Sun SG
    ChemSusChem; 2023 Apr; 16(7):e202202252. PubMed ID: 36627241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical Review on cathode-electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries.
    Xu J
    Nanomicro Lett; 2022 Aug; 14(1):166. PubMed ID: 35974213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the Formation of Cathode-Electrolyte Interphase on Lithium Iron Phosphate Cathodes via Operando Mechanical Measurements.
    Bal B; Ozdogru B; Nguyen DT; Li Z; Murugesan V; Çapraz ÖÖ
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42449-42459. PubMed ID: 37659069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-in-Salt Electrolyte Promotes High-Capacity FeFe(CN)
    Zhou A; Jiang L; Yue J; Tong Y; Zhang Q; Lin Z; Liu B; Wu C; Suo L; Hu YS; Li H; Chen L
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41356-41362. PubMed ID: 31603299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An In Situ Artificial Cathode Electrolyte Interphase Strategy for Suppressing Cathode Dissolution in Aqueous Zinc Ion Batteries.
    Zhang L; Zhang B; Hu J; Liu J; Miao L; Jiang J
    Small Methods; 2021 Jun; 5(6):e2100094. PubMed ID: 34927912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Artificial MnWO
    Tian H; Zhang H; Zuo Y; Ling L; Meng T; Zhang H; Sun X; Cai S
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cathode-Electrolyte Interphase Engineering toward Fast-Charging LiFePO
    Chen J; Onah OE; Cheng Y; Silva KJ; Choi CHW; Chen W; Xu S; Eddy L; Han Y; Yakobson BI; Zhao Y; Tour JM
    Small Methods; 2024 Sep; ():e2400680. PubMed ID: 39246206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstitial Water Improves Structural Stability of Iron Hexacyanoferrate for High-Performance Sodium-Ion Batteries.
    Hu J; Tao H; Chen M; Zhang Z; Cao S; Shen Y; Jiang K; Zhou M
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12234-12242. PubMed ID: 35234035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries.
    Zhang Z; Avdeev M; Chen H; Yin W; Kan WH; He G
    Nat Commun; 2022 Dec; 13(1):7790. PubMed ID: 36526618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonsacrificial Additive for Tuning the Cathode-Electrolyte Interphase of Lithium-Ion Batteries.
    Zou L; Gao P; Jia H; Cao X; Wu H; Wang H; Zhao W; Matthews BE; Xu Z; Li X; Zhang JG; Xu W; Wang C
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4111-4118. PubMed ID: 35015502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Cathode-Electrolyte Interphase via Electrolyte Additives in Lithium Ion Batteries.
    Wang XT; Gu ZY; Li WH; Zhao XX; Guo JZ; Du KD; Luo XX; Wu XL
    Chem Asian J; 2020 Sep; 15(18):2803-2814. PubMed ID: 32543733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prussian Blue Analogues for Sodium-Ion Battery Cathodes: A Review of Mechanistic Insights, Current Challenges, and Future Pathways.
    Xiao Y; Xiao J; Zhao H; Li J; Zhang G; Zhang D; Guo X; Gao H; Wang Y; Chen J; Wang G; Liu H
    Small; 2024 Aug; 20(35):e2401957. PubMed ID: 38682730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-Long Cycle of Prussian Blue Analogs Achieved by Equilibrium Electrolyte for Aqueous Sodium-Ion Batteries.
    Liu J; Yang C; Wen B; Li B; Liu Y
    Small; 2023 Nov; 19(46):e2303896. PubMed ID: 37460403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of Inorganic-Rich Cathode Electrolyte Interphase on Co-Free Cathodes.
    Li J; Xu H; Li J; Chen X; Zhang Y; Liu W; Li W; Han C; An S; Wang X; Qiu X
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26627-26636. PubMed ID: 37220156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of LiF-rich Cathode-Electrolyte Interphase by Electrolyte Reduction.
    Bai P; Ji X; Zhang J; Zhang W; Hou S; Su H; Li M; Deng T; Cao L; Liu S; He X; Xu Y; Wang C
    Angew Chem Int Ed Engl; 2022 Jun; 61(26):e202202731. PubMed ID: 35395115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the Cathode Electrolyte Interface in Lithium Ion Batteries by Desorption Electrospray Ionization Mass Spectrometry.
    Liu YM; G Nicolau B; Esbenshade JL; Gewirth AA
    Anal Chem; 2016 Jul; 88(14):7171-7. PubMed ID: 27346184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Electrochemical Polymerization of Cathode Electrolyte Interphase Enabling High-Performance Lithium Metal Batteries.
    Sun S; Yu J; Ma X; Fang P; Yang M; Yang J; Wu M; Hu Y; Yan F
    Small; 2024 Oct; 20(43):e2403145. PubMed ID: 38881358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-Vanadium Incorporated Ferrocyanides as Potential Cathode Materials for Application in Sodium-Ion Batteries.
    Nguyen TP; Kim IT
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.