These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 38869099)
21. Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries. Xu C; Yang Z; Zhang X; Xia M; Yan H; Li J; Yu H; Zhang L; Shu J Nanomicro Lett; 2021 Aug; 13(1):166. PubMed ID: 34351516 [TBL] [Abstract][Full Text] [Related]
22. Dislocation Effect Boosting the Electrochemical Properties of Prussian Blue Analogues for 2.6 V High-Voltage Aqueous Zinc-Based Batteries. Zhou L; Wu C; Yu F; Li Y; Liu H; Zheng C; Shen F; Wen A; Wang B ACS Appl Mater Interfaces; 2024 Sep; 16(36):47454-47463. PubMed ID: 39223694 [TBL] [Abstract][Full Text] [Related]
23. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries. Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006 [TBL] [Abstract][Full Text] [Related]
24. Anion-Induced Uniform and Robust Cathode-Electrolyte Interphase for Layered Metal Oxide Cathodes of Sodium Ion Batteries. Wu M; Zhang B; Ye Y; Fu L; Xie H; Jin H; Tang Y; Wang H; Sun D ACS Appl Mater Interfaces; 2024 Mar; 16(12):15586-15595. PubMed ID: 38489747 [TBL] [Abstract][Full Text] [Related]
25. Degradation of Ethylene Carbonate Electrolytes of Lithium Ion Batteries via Ring Opening Activated by LiCoO Tebbe JL; Fuerst TF; Musgrave CB ACS Appl Mater Interfaces; 2016 Oct; 8(40):26664-26674. PubMed ID: 27610630 [TBL] [Abstract][Full Text] [Related]
26. Aqueous Dual-Electrolyte Full-Cell System for Improving Energy Density of Sodium-Ion Batteries. Zhou W; Zheng Y; Zartashia M; Shan Y; Noor H; Lou H; Hou X ACS Appl Mater Interfaces; 2022 Aug; 14(30):34835-34843. PubMed ID: 35875895 [TBL] [Abstract][Full Text] [Related]
27. Lithium Bromide-Induced Organic-Rich Cathode/Electrolyte Interphase for High-Voltage and Flame-Retardant All-Solid-State Lithium Batteries. Zhou HY; Yan SS; Li J; Dong H; Zhou P; Wan L; Chen XX; Zhang WL; Xia YC; Wang PC; Wang BG; Liu K ACS Appl Mater Interfaces; 2022 Jun; 14(21):24469-24479. PubMed ID: 35587195 [TBL] [Abstract][Full Text] [Related]
28. Controllable Solid Electrolyte Interphase in Nickel-Rich Cathodes by an Electrochemical Rearrangement for Stable Lithium-Ion Batteries. Kim J; Lee J; Ma H; Jeong HY; Cha H; Lee H; Yoo Y; Park M; Cho J Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29226554 [TBL] [Abstract][Full Text] [Related]
29. Vanadium Ferrocyanides as a Highly Stable Cathode for Lithium-Ion Batteries. Nguyen TP; Kim IT Molecules; 2023 Jan; 28(2):. PubMed ID: 36677524 [TBL] [Abstract][Full Text] [Related]
30. Li Wang T; Jiao X; Rao L; Stout M; Gibson A; Kidner N; Choi J; Kim JH ACS Appl Mater Interfaces; 2023 Aug; 15(33):39234-39244. PubMed ID: 37572053 [TBL] [Abstract][Full Text] [Related]
31. Completely Activated and Phase-Transformed KFeMnHCF for Zn/K Hybrid Batteries with 14 500 Cycles by an OH-Rich Hydrogel Electrolyte. Li C; Li Q; Wu Z; Wang Y; Zhang R; Cui H; Hou Y; Liu J; Huang Z; Zhi C Adv Mater; 2024 Apr; 36(17):e2304878. PubMed ID: 37401112 [TBL] [Abstract][Full Text] [Related]
32. Vanadium Hexacyanoferrate as a High-Capacity and High-Voltage Cathode for Aqueous Rechargeable Zinc Ion Batteries. Zhang S; Pang Q; Ai Y; He W; Fu Y; Xing M; Tian Y; Luo X Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500891 [TBL] [Abstract][Full Text] [Related]
33. Vacancies-regulated Prussian Blue Analogues through Precipitation Conversion for Cathodes in Sodium-ion Batteries with Energy Densities over 500 Wh/kg. Liu J; Wang Y; Jiang N; Wen B; Yang C; Liu Y Angew Chem Int Ed Engl; 2024 Sep; 63(39):e202400214. PubMed ID: 38299760 [TBL] [Abstract][Full Text] [Related]
34. The Quest for Stable Potassium-Ion Battery Chemistry. Wu X; Qiu S; Liu Y; Xu Y; Jian Z; Yang J; Ji X; Liu J Adv Mater; 2022 Feb; 34(5):e2106876. PubMed ID: 34648671 [TBL] [Abstract][Full Text] [Related]
35. Potassium Nickel Iron Hexacyanoferrate as Ultra-Long-Life Cathode Material for Potassium-Ion Batteries with High Energy Density. Chong S; Yang J; Sun L; Guo S; Liu Y; Liu HK ACS Nano; 2020 Aug; 14(8):9807-9818. PubMed ID: 32709197 [TBL] [Abstract][Full Text] [Related]
36. High-Entropy and Component Stoichiometry Tuning Strategies Boost the Sodium-Ion Storage Performance of Cobalt-Free Prussian Blue Analogues Cathode Materials. Lin YT; Niu BT; Wang ZH; Li YX; Xu YP; Liu SW; Chen YX; Lin XM Molecules; 2024 Sep; 29(19):. PubMed ID: 39407489 [TBL] [Abstract][Full Text] [Related]
37. Reversible Deposition and Stripping of the Cathode Electrolyte Interphase on Li Hestenes JC; Ells AW; Navarro Goldaraz M; Sergeyev IV; Itin B; Marbella LE Front Chem; 2020; 8():681. PubMed ID: 32850679 [TBL] [Abstract][Full Text] [Related]
38. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
39. Dual-Functional Electrolyte Additives toward Long-Cycling Lithium-Ion Batteries: Ecofriendly Designed Carbonate Derivatives. Han JG; Hwang E; Kim Y; Park S; Kim K; Roh DH; Gu M; Lee SH; Kwon TH; Kim Y; Choi NS; Kim BS ACS Appl Mater Interfaces; 2020 May; 12(21):24479-24487. PubMed ID: 32368903 [TBL] [Abstract][Full Text] [Related]
40. Optimizing the Electrolyte Systems for Na He J; Tao T; Yang F; Sun Z ChemSusChem; 2022 Apr; 15(8):e202102522. PubMed ID: 35050553 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]