BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38869587)

  • 1. Performance Projection of Vacuum Gate Dielectric Doping-Free Carbon Nanoribbon/Nanotube Field-Effect Transistors for Radiation-Immune Nanoelectronics.
    Tamersit K; Kouzou A; Rodriguez J; Abdelrahem M
    Nanomaterials (Basel); 2024 Jun; 14(11):. PubMed ID: 38869587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergy of Electrostatic and Chemical Doping to Improve the Performance of Junctionless Carbon Nanotube Tunneling Field-Effect Transistors: Ultrascaling, Energy-Efficiency, and High Switching Performance.
    Tamersit K; Kouzou A; Bourouba H; Kennel R; Abdelrahem M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatically Doped Junctionless Graphene Nanoribbon Tunnel Field-Effect Transistor for High-Performance Gas Sensing Applications: Leveraging Doping Gates for Multi-Gas Detection.
    Tamersit K; Kouzou A; Rodriguez J; Abdelrahem M
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38276738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging negative capacitance ferroelectric materials for performance boosting of sub-10 nm graphene nanoribbon field-effect transistors: a quantum simulation study.
    Tamersit K; Moaiyeri MH; Jooq MKQ
    Nanotechnology; 2022 Aug; 33(46):. PubMed ID: 35947928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Junctionless Mode in Improving the Photosensitivity of Sub-10 nm Carbon Nanotube/Nanoribbon Field-Effect Phototransistors: Quantum Simulation, Performance Assessment, and Comparison.
    Tamersit K; Madan J; Kouzou A; Pandey R; Kennel R; Abdelrahem M
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Band-to-Band Tunneling Leakage Current Characterization and Projection in Carbon Nanotube Transistors.
    Lin Q; Gilardi C; Su SK; Zhang Z; Chen E; Bandaru P; Kummel A; Radu I; Mitra S; Pitner G; Wong HP
    ACS Nano; 2023 Nov; 17(21):21083-21092. PubMed ID: 37910857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trade-off analysis between g
    Ahmad MA; Kumar P; Mech BC; Kumar J
    Sci Rep; 2024 May; 14(1):10218. PubMed ID: 38702353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical investigation on the convergence of self-consistent Schrödinger-Poisson equations in semiconductor device transport simulation.
    Zhu J; Cao J; Song C; Li B; Han Z
    Nanotechnology; 2024 May; 35(31):. PubMed ID: 38764182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric Modulated Nanotube Tunnel Field-Effect Transistor as a Label Free Biosensor: Proposal and Investigation.
    Sen D; Patel SD; Sahay S
    IEEE Trans Nanobioscience; 2023 Jan; 22(1):163-173. PubMed ID: 35503819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering.
    Ding L; Wang Z; Pei T; Zhang Z; Wang S; Xu H; Peng F; Li Y; Peng LM
    ACS Nano; 2011 Apr; 5(4):2512-9. PubMed ID: 21370813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors.
    Hur JH; Kim DK
    Nanotechnology; 2018 May; 29(18):185202. PubMed ID: 29457778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing Gamma-Ray Irradiation Effects on Carbon Nanotube Top-Gated Field-Effect Transistors.
    Zhu M; Zhou J; Sun P; Peng LM; Zhang Z
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47756-47763. PubMed ID: 34581560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric Analysis of Indium Gallium Arsenide Wafer-based Thin Body (5 nm) Double-gate MOSFETs for Hybrid RF Applications.
    Paramasivam P; Gowthaman N; Srivastava VM
    Recent Pat Nanotechnol; 2024; 18(3):335-349. PubMed ID: 37723950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene Nanoribbon Field Effect Transistor Simulations for the Detection of Sugar Molecules: Semi-Empirical Modeling.
    Wasfi A; Al Hamarna A; Al Shehhi OMH; Al Ameri HFM; Awwad F
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free detection of DNA by a dielectric modulated armchair-graphene nanoribbon FET based biosensor in a dual-nanogap setup.
    Anvarifard MK; Ramezani Z; Amiri IS
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111293. PubMed ID: 32919654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio.
    Qiu C; Zhang Z; Zhong D; Si J; Yang Y; Peng LM
    ACS Nano; 2015 Jan; 9(1):969-77. PubMed ID: 25545108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WSe
    Pang CS; Chen CY; Ameen T; Zhang S; Ilatikhameneh H; Rahman R; Klimeck G; Chen Z
    Small; 2019 Oct; 15(41):e1902770. PubMed ID: 31448564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new line tunneling SiGe/Si iTFET with control gate for leakage suppression and subthreshold swing improvement.
    Lin JT; Weng SC
    Discov Nano; 2023 Jul; 18(1):96. PubMed ID: 37505432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly reliable carbon nanotube transistors with patterned gates and molecular gate dielectric.
    Weitz RT; Zschieschang U; Forment-Aliaga A; Kälblein D; Burghard M; Kern K; Klauk H
    Nano Lett; 2009 Apr; 9(4):1335-40. PubMed ID: 19351189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Analysis of an α-Graphyne Nano-Field Effect Transistor.
    Khan H; Islam MM; Roya RI; Azad SN; Alam M
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.