These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38869625)

  • 1. Cyclopropanation and membrane unsaturation improve antibiotic resistance of swarmer Pseudomonas and its sod mutants exposed to radiations, in vitro and in silico approch.
    Kloula Ben Ghorbal S; Dhaya I; Ouzari IH; Chatti A
    World J Microbiol Biotechnol; 2024 Jun; 40(8):243. PubMed ID: 38869625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implication of Mn-cofactored superoxide dismutase in the tolerance of swarmer Pseudomonas aeruginosa to polymixin, ciprofloxacin and meropenem antibiotics.
    Ben Ghorbal SK; Maalej L; Ouzari IH; Chatti A
    World J Microbiol Biotechnol; 2023 Oct; 39(12):347. PubMed ID: 37856014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism.
    Hassett DJ; Schweizer HP; Ohman DE
    J Bacteriol; 1995 Nov; 177(22):6330-7. PubMed ID: 7592406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant Defense Mechanisms in Pseudomonas aeruginosa: Role of Iron-Cofactored Superoxide Dismutase in Response to UV-C Radiations.
    Ghorbal SK; Maalej L; Chourabi K; Khefacha S; Ouzari HI; Chatti A
    Curr Microbiol; 2016 Aug; 73(2):159-64. PubMed ID: 27094998
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Ghorbal SKB; Chourabi K; Maalej L; Ammar AB; Ouzari HI; Hassen A; Jaafoura H; Chatti A
    Front Microbiol; 2019; 10():556. PubMed ID: 31001210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Monitoring of
    Zaborskyte G; Andersen JB; Kragh KN; Ciofu O
    Antimicrob Agents Chemother; 2017 Mar; 61(3):. PubMed ID: 27993856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorhexidine leads to the evolution of antibiotic-resistant Pseudomonas aeruginosa.
    Tag ElDein MA; Yassin AS; El-Tayeb O; Kashef MT
    Eur J Clin Microbiol Infect Dis; 2021 Nov; 40(11):2349-2361. PubMed ID: 34169445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of Antibiotic Tolerance in Sod-Deficient Mutants Is Dependent on the Energy Source and Arginine Catabolism in Enterococci.
    Ladjouzi R; Bizzini A; van Schaik W; Zhang X; Rincé A; Benachour A; Hartke A
    J Bacteriol; 2015 Oct; 197(20):3283-93. PubMed ID: 26260456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fis Contributes to Resistance of Pseudomonas aeruginosa to Ciprofloxacin by Regulating Pyocin Synthesis.
    Long Y; Fu W; Wang S; Deng X; Jin Y; Bai F; Cheng Z; Wu W
    J Bacteriol; 2020 May; 202(11):. PubMed ID: 32205461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of the Major Multifunctional Catalase KatA in Pseudomonas aeruginosa Accelerates Evolution of Antibiotic Resistance in Ciprofloxacin-Treated Biofilms.
    Ahmed MN; Porse A; Abdelsamad A; Sommer M; Høiby N; Ciofu O
    Antimicrob Agents Chemother; 2019 Oct; 63(10):. PubMed ID: 31307984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the polymyxin B resistome of Pseudomonas aeruginosa.
    Fernández L; Alvarez-Ortega C; Wiegand I; Olivares J; Kocíncová D; Lam JS; Martínez JL; Hancock RE
    Antimicrob Agents Chemother; 2013 Jan; 57(1):110-9. PubMed ID: 23070157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational background influences
    Hernando-Amado S; Laborda P; Valverde JR; Martínez JL
    Proc Natl Acad Sci U S A; 2022 Apr; 119(15):e2109370119. PubMed ID: 35385351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcription analysis of resistant mutants against four different antibiotics in Pseudomonas aeruginosa.
    Zhang W; Yuan Y; Li S; Deng B; Zhang J; Li Z
    Microb Pathog; 2021 Nov; 160():105166. PubMed ID: 34480983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Damage of the swarmer
    Ben Ghorbal Salma K; Abdelwahed Inès M; Rim W; Chatti A
    Int J Environ Health Res; 2023 Oct; 33(10):1047-1058. PubMed ID: 35475410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Sod Gene in Response to Static Magnetic Fields in Pseudomonas aeruginosa.
    Hanini R; Chatti A; Ghorbel SB; Landoulsi A
    Curr Microbiol; 2017 Aug; 74(8):930-937. PubMed ID: 28523373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrate Respiration Promotes Polymyxin B Resistance in
    Kim BO; Jang HJ; Chung IY; Bae HW; Kim ES; Cho YH
    Antioxid Redox Signal; 2021 Feb; 34(6):442-451. PubMed ID: 32370551
    [No Abstract]   [Full Text] [Related]  

  • 17. Pseudomonas aeruginosa deficient in 8-oxodeoxyguanine repair system shows a high frequency of resistance to ciprofloxacin.
    Morero NR; Argaraña CE
    FEMS Microbiol Lett; 2009 Jan; 290(2):217-26. PubMed ID: 19025574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide dismutase activity confers (p)ppGpp-mediated antibiotic tolerance to stationary-phase
    Martins D; McKay G; Sampathkumar G; Khakimova M; English AM; Nguyen D
    Proc Natl Acad Sci U S A; 2018 Sep; 115(39):9797-9802. PubMed ID: 30201715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex ciprofloxacin resistome revealed by screening a Pseudomonas aeruginosa mutant library for altered susceptibility.
    Breidenstein EB; Khaira BK; Wiegand I; Overhage J; Hancock RE
    Antimicrob Agents Chemother; 2008 Dec; 52(12):4486-91. PubMed ID: 18824609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sublethal ciprofloxacin treatment leads to rapid development of high-level ciprofloxacin resistance during long-term experimental evolution of Pseudomonas aeruginosa.
    Jørgensen KM; Wassermann T; Jensen PØ; Hengzuang W; Molin S; Høiby N; Ciofu O
    Antimicrob Agents Chemother; 2013 Sep; 57(9):4215-21. PubMed ID: 23774442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.