BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38869791)

  • 1. Detection of Stress-Induced Changes in Subcellular Protein Distribution.
    Seidel T
    Methods Mol Biol; 2024; 2832():115-132. PubMed ID: 38869791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular mobility and nuclear trafficking of the stress-activated kinase JNK1 are impeded by hyperosmotic stress.
    Misheva M; Kaur G; Ngoei KR; Yeap YY; Ng IH; Wagstaff KM; Ng DC; Jans DA; Bogoyevitch MA
    Biochim Biophys Acta; 2014 Feb; 1843(2):253-64. PubMed ID: 24184208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TcellSubC: An Atlas of the Subcellular Proteome of Human T Cells.
    Joshi RN; Stadler C; Lehmann R; Lehtiö J; Tegnér J; Schmidt A; Vesterlund M
    Front Immunol; 2019; 10():2708. PubMed ID: 31849937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple-Localization and Hub Proteins.
    Ota M; Gonja H; Koike R; Fukuchi S
    PLoS One; 2016; 11(6):e0156455. PubMed ID: 27285823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage.
    Boisvert FM; Lam YW; Lamont D; Lamond AI
    Mol Cell Proteomics; 2010 Mar; 9(3):457-70. PubMed ID: 20026476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated quantification of the subcellular localization of multicompartment proteins via Q-SCAn.
    Bauer NC; Corbett AH; Doetsch PW
    Traffic; 2013 Dec; 14(12):1200-8. PubMed ID: 24034606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractionation of Subcellular Compartments from Human Brain Tissue.
    Mueller TM; Kim P; Meador-Woodruff JH
    Methods Mol Biol; 2019; 1941():201-223. PubMed ID: 30707436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Method to Estimate the Distribution of Proteins across Multiple Compartments Using Data from Quantitative Proteomics Subcellular Fractionation Experiments.
    Moore DF; Sleat DE; Lobel P
    J Proteome Res; 2022 Jun; 21(6):1371-1381. PubMed ID: 35522998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative proteomics reveals regulation of karyopherin subunit alpha-2 (KPNA2) and its potential novel cargo proteins in nonsmall cell lung cancer.
    Wang CI; Chien KY; Wang CL; Liu HP; Cheng CC; Chang YS; Yu JS; Yu CJ
    Mol Cell Proteomics; 2012 Nov; 11(11):1105-22. PubMed ID: 22843992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LYRIC/AEG-1 is targeted to different subcellular compartments by ubiquitinylation and intrinsic nuclear localization signals.
    Thirkettle HJ; Girling J; Warren AY; Mills IG; Sahadevan K; Leung H; Hamdy F; Whitaker HC; Neal DE
    Clin Cancer Res; 2009 May; 15(9):3003-13. PubMed ID: 19383828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Live-cell nucleocytoplasmic protein shuttle assay utilizing laser confocal microscopy and FRAP.
    Howell JL; Truant R
    Biotechniques; 2002 Jan; 32(1):80-2, 84, 86-7. PubMed ID: 11808703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isoform-specific differences in rapid nucleocytoplasmic shuttling cause distinct subcellular distributions of 14-3-3 sigma and 14-3-3 zeta.
    van Hemert MJ; Niemantsverdriet M; Schmidt T; Backendorf C; Spaink HP
    J Cell Sci; 2004 Mar; 117(Pt 8):1411-20. PubMed ID: 14996909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of the full length and mutated heat shock factor 1 in human cells.
    Herbomel G; Kloster-Landsberg M; Folco EG; Col E; Usson Y; Vourc'h C; Delon A; Souchier C
    PLoS One; 2013; 8(7):e67566. PubMed ID: 23861773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Cross-Talk between Oxidative Stress and DNA Replication in Human Fibroblasts.
    Radulovic M; Baqader NO; Stoeber K; Godovac-Zimmermann J
    J Proteome Res; 2016 Jun; 15(6):1907-38. PubMed ID: 27142241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery.
    Liu GT; Ma L; Duan W; Wang BC; Li JH; Xu HG; Yan XQ; Yan BF; Li SH; Wang LJ
    BMC Plant Biol; 2014 Apr; 14():110. PubMed ID: 24774513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Subcellular Localization Prediction.
    Barberis E; Marengo E; Manfredi M
    Methods Mol Biol; 2021; 2361():197-212. PubMed ID: 34236663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DYT-TOR1A subcellular proteomics reveals selective vulnerability of the nuclear proteome to cell stress.
    Shroff K; Caffall ZF; Calakos N
    Neurobiol Dis; 2021 Oct; 158():105464. PubMed ID: 34358617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria.
    Rey S; Gardy JL; Brinkman FS
    BMC Genomics; 2005 Nov; 6():162. PubMed ID: 16288665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Distribution of HIG2A between the Mitochondria and the Nucleus in Response to Hypoxia and Oxidative Stress.
    Salazar C; Barros M; Elorza AA; Ruiz LM
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular proteomics reveals a role for nucleo-cytoplasmic trafficking at the DNA replication origin activation checkpoint.
    Mulvey CM; Tudzarova S; Crawford M; Williams GH; Stoeber K; Godovac-Zimmermann J
    J Proteome Res; 2013 Mar; 12(3):1436-53. PubMed ID: 23320540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.