These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38869993)

  • 21. Prediction and detection of freezing of gait in Parkinson's disease from plantar pressure data using long short-term memory neural-networks.
    Shalin G; Pardoel S; Lemaire ED; Nantel J; Kofman J
    J Neuroeng Rehabil; 2021 Nov; 18(1):167. PubMed ID: 34838066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multimodal Gait Abnormality Recognition Using a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) Network Based on Multi-Sensor Data Fusion.
    Li J; Liang W; Yin X; Li J; Guan W
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design, development, and evaluation of a local sensor-based gait phase recognition system using a logistic model decision tree for orthosis-control.
    Farah JD; Baddour N; Lemaire ED
    J Neuroeng Rehabil; 2019 Feb; 16(1):22. PubMed ID: 30709363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning.
    Kiprijanovska I; Gjoreski H; Gams M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of Temporal Gait Parameters Using a Wearable Microphone-Sensor-Based System.
    Wang C; Wang X; Long Z; Yuan J; Qian Y; Li J
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fall Risk Prediction in Parkinson's Disease Using Real-World Inertial Sensor Gait Data.
    Ullrich M; Roth N; Kuderle A; Richer R; Gladow T; Gasner H; Marxreiter F; Klucken J; Eskofier BM; Kluge F
    IEEE J Biomed Health Inform; 2023 Jan; 27(1):319-328. PubMed ID: 36260566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unobtrusive and Continuous Monitoring of Alcohol-impaired Gait Using Smart Shoes.
    Park E; Lee SI; Nam HS; Garst JH; Huang A; Campion A; Arnell M; Ghalehsariand N; Park S; Chang HJ; Lu DC; Sarrafzadeh M
    Methods Inf Med; 2017 Jan; 56(1):74-82. PubMed ID: 27782289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient and Robust Skeleton-Based Quality Assessment and Abnormality Detection in Human Action Performance.
    Elkholy A; Hussein ME; Gomaa W; Damen D; Saba E
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):280-291. PubMed ID: 30869634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detecting Fall Risk and Frailty in Elders with Inertial Motion Sensors: A Survey of Significant Gait Parameters.
    Ruiz-Ruiz L; Jimenez AR; Garcia-Villamil G; Seco F
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intelligent wearable system with accurate detection of abnormal gait and timely cueing for mobility enhancement of people with Parkinson's disease.
    Yang B; Li Y; Wang F; Auyeung S; Leung M; Mak M; Tao X
    Wearable Technol; 2022; 3():e12. PubMed ID: 38486907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On-Demand Gait-Synchronous Electrical Cueing in Parkinson's Disease Using Machine Learning and Edge Computing: A Pilot Study.
    Dvorani A; Wiesener C; Salchow-Hommen C; Jochner M; Spieker L; Skrobot M; Voigt H; Kuhn A; Wenger N; Schauer T
    IEEE Open J Eng Med Biol; 2024; 5():306-315. PubMed ID: 38766539
    [No Abstract]   [Full Text] [Related]  

  • 32. Acoustic Gaits: Gait Analysis With Footstep Sounds.
    Altaf MU; Butko T; Juang BH
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):2001-11. PubMed ID: 25769144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium.
    Micó-Amigo ME; Bonci T; Paraschiv-Ionescu A; Ullrich M; Kirk C; Soltani A; Küderle A; Gazit E; Salis F; Alcock L; Aminian K; Becker C; Bertuletti S; Brown P; Buckley E; Cantu A; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; D'Ascanio I; Eskofier B; Fernstad S; Froehlich M; Garcia-Aymerich J; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Kluge F; Koch S; Maetzler W; Megaritis D; Mueller A; Niessen M; Palmerini L; Schwickert L; Scott K; Sharrack B; Sillén H; Singleton D; Vereijken B; Vogiatzis I; Yarnall AJ; Rochester L; Mazzà C; Del Din S;
    J Neuroeng Rehabil; 2023 Jun; 20(1):78. PubMed ID: 37316858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-Time Gait Phase Detection on Wearable Devices for Real-World Free-Living Gait.
    Wu J; Becsek B; Schaer A; Maurenbrecher H; Chatzipirpiridis G; Ergeneman O; Pane S; Torun H; Nelson BJ
    IEEE J Biomed Health Inform; 2022 Dec; PP():. PubMed ID: 37015703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis and fusion of spatiotemporal information for footstep recognition.
    Vera-Rodriguez R; Mason JS; Fierrez J; Ortega-Garcia J
    IEEE Trans Pattern Anal Mach Intell; 2013 Apr; 35(4):823-34. PubMed ID: 22868647
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic Diagnosis of Cerebral Palsy Gait Using Computational Intelligence Techniques: A Low-Cost Multi-Sensor Approach.
    Chakraborty S; Nandy A
    IEEE Trans Neural Syst Rehabil Eng; 2020 Nov; 28(11):2488-2496. PubMed ID: 33001807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. See your mental state from your walk: Recognizing anxiety and depression through Kinect-recorded gait data.
    Zhao N; Zhang Z; Wang Y; Wang J; Li B; Zhu T; Xiang Y
    PLoS One; 2019; 14(5):e0216591. PubMed ID: 31116785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implementation of a Deep Learning Algorithm Based on Vertical Ground Reaction Force Time-Frequency Features for the Detection and Severity Classification of Parkinson's Disease.
    Setiawan F; Lin CW
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Machine Learning Approach for Walking Classification in Elderly People with Gait Disorders.
    Peimankar A; Winther TS; Ebrahimi A; Wiil UK
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accuracy, concurrent validity, and test-retest reliability of pressure-based insoles for gait measurement in chronic stroke patients.
    Neumann S; Bauer CM; Nastasi L; Läderach J; Thürlimann E; Schwarz A; Held JPO; Easthope CA
    Front Digit Health; 2024; 6():1359771. PubMed ID: 38633383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.