These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38870088)

  • 1. Single-step generation of homozygous knockout/knock-in individuals in an extremotolerant parthenogenetic tardigrade using DIPA-CRISPR.
    Kondo K; Tanaka A; Kunieda T
    PLoS Genet; 2024 Jun; 20(6):e1011298. PubMed ID: 38870088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of CRISPR/Cas9 system and the preferred no-indel end-joining repair in tardigrades.
    Kumagai H; Kondo K; Kunieda T
    Biochem Biophys Res Commun; 2022 Oct; 623():196-201. PubMed ID: 35926276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs.
    Okamoto S; Amaishi Y; Maki I; Enoki T; Mineno J
    Sci Rep; 2019 Mar; 9(1):4811. PubMed ID: 30886178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Transgenic Mice Using CRISPR /Cas9 Technology.
    El Marjou F; Jouhanneau C; Krndija D
    Methods Mol Biol; 2021; 2214():125-141. PubMed ID: 32944907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DIPA-CRISPR is a simple and accessible method for insect gene editing.
    Shirai Y; Piulachs MD; Belles X; Daimon T
    Cell Rep Methods; 2022 May; 2(5):100215. PubMed ID: 35637909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein.
    Hashimoto T; Horikawa DD; Saito Y; Kuwahara H; Kozuka-Hata H; Shin-I T; Minakuchi Y; Ohishi K; Motoyama A; Aizu T; Enomoto A; Kondo K; Tanaka S; Hara Y; Koshikawa S; Sagara H; Miura T; Yokobori SI; Miyagawa K; Suzuki Y; Kubo T; Oyama M; Kohara Y; Fujiyama A; Arakawa K; Katayama T; Toyoda A; Kunieda T
    Nat Commun; 2016 Sep; 7():12808. PubMed ID: 27649274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of conventional and alternative CRISPR/Cas9 genome editing to enhance a single-base pair knock-in mutation.
    Edmondson C; Zhou Q; Liu X
    BMC Biotechnol; 2021 Jul; 21(1):45. PubMed ID: 34315458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-targeting strategy for precise, scarless gene editing with CRISPR/Cas9 and donor ssODNs in Chlamydomonas.
    Akella S; Ma X; Bacova R; Harmer ZP; Kolackova M; Wen X; Wright DA; Spalding MH; Weeks DP; Cerutti H
    Plant Physiol; 2021 Dec; 187(4):2637-2655. PubMed ID: 34618092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple and efficient workflow for generation of knock-in mutations in Jurkat T cells using CRISPR/Cas9.
    Borowicz P; Chan H; Medina D; Gumpelmair S; Kjelstrup H; Spurkland A
    Scand J Immunol; 2020 Apr; 91(4):e12862. PubMed ID: 31889332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of CRISPR/Cas9 for the Modification of the Mouse Genome.
    Klimke A; Güttler S; Kuballa P; Janzen S; Ortmann S; Flora A
    Methods Mol Biol; 2019; 1953():213-230. PubMed ID: 30912024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR based targeted genome editing of Chlamydomonas reinhardtii using programmed Cas9-gRNA ribonucleoprotein.
    Dhokane D; Bhadra B; Dasgupta S
    Mol Biol Rep; 2020 Nov; 47(11):8747-8755. PubMed ID: 33074412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome editing with CRISPR/Cas9 in Pinus radiata (D. Don).
    Poovaiah C; Phillips L; Geddes B; Reeves C; Sorieul M; Thorlby G
    BMC Plant Biol; 2021 Aug; 21(1):363. PubMed ID: 34376154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna.
    Kumagai H; Nakanishi T; Matsuura T; Kato Y; Watanabe H
    PLoS One; 2017; 12(10):e0186112. PubMed ID: 29045453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing.
    Kumita W; Sato K; Suzuki Y; Kurotaki Y; Harada T; Zhou Y; Kishi N; Sato K; Aiba A; Sakakibara Y; Feng G; Okano H; Sasaki E
    Sci Rep; 2019 Sep; 9(1):12719. PubMed ID: 31481684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple method using CRISPR-Cas9 to knock-out genes in murine cancerous cell lines.
    Ishibashi A; Saga K; Hisatomi Y; Li Y; Kaneda Y; Nimura K
    Sci Rep; 2020 Dec; 10(1):22345. PubMed ID: 33339985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis.
    Kato S; Fukazawa T; Kubo T
    Biochem Biophys Res Commun; 2021 Mar; 543():50-55. PubMed ID: 33515912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient ssODN-Mediated Targeting by Avoiding Cellular Inhibitory RNAs through Precomplexed CRISPR-Cas9/sgRNA Ribonucleoprotein.
    Kagita A; Lung MSY; Xu H; Kita Y; Sasakawa N; Iguchi T; Ono M; Wang XH; Gee P; Hotta A
    Stem Cell Reports; 2021 Apr; 16(4):985-996. PubMed ID: 33711268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Generation of Knock-In Zebrafish Models for Inherited Disorders Using CRISPR-Cas9 Ribonucleoprotein Complexes.
    de Vrieze E; de Bruijn SE; Reurink J; Broekman S; van de Riet V; Aben M; Kremer H; van Wijk E
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins.
    Yu J; Tu L; Subburaj S; Bae S; Lee GJ
    Plant Cell Rep; 2021 Jun; 40(6):1037-1045. PubMed ID: 32959126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.