These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38870135)
1. Effects of different observed datasets on the calibration of crop model parameters with GLUE: A case study using the CROPGRO-Soybean phenological model. Zhang Y; Zhang Y; Jiang H; Tang L; Liu X; Cao W; Zhu Y PLoS One; 2024; 19(6):e0302098. PubMed ID: 38870135 [TBL] [Abstract][Full Text] [Related]
2. Spectral indices with different spatial resolutions in recognizing soybean phenology. da Silva AA; Silva FCDS; Guimarães CM; Saleh IA; da Crus Neto JF; El-Tayeb MA; Abdel-Maksoud MA; González Aguilera J; AbdElgawad H; Zuffo AM PLoS One; 2024; 19(9):e0305610. PubMed ID: 39292688 [TBL] [Abstract][Full Text] [Related]
3. CSM-CROPGRO model to simulate safflower phenological development and yield. Afzal O; Ahmed M; Fayyaz-Ul-Hassan ; Shabbir G; Ahmed S; Hoogenboom G Int J Biometeorol; 2024 Jun; 68(6):1213-1228. PubMed ID: 38538982 [TBL] [Abstract][Full Text] [Related]
4. Developing a simple and efficient modeling solution for predicting key phenological stages of table grapes in a non-traditional viticulture zone in south Asia. Rafique R; Ahmad T; Khan MA; Ahmed M; Hoogenboom G Int J Biometeorol; 2024 Aug; 68(8):1587-1601. PubMed ID: 38722337 [TBL] [Abstract][Full Text] [Related]
5. [Parameter estimation and verification of DSSAT-CROPGRO-Tomato model under different irrigation levels in greenhouse.]. Zhao ZL; Li B; Feng X; Yao MZ; Xie Y; Xing JW; Li CX Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):2017-2027. PubMed ID: 29974713 [TBL] [Abstract][Full Text] [Related]
6. Sensitivity analysis of the CROPGRO-Canola model in China: A case study for rapeseed. Xu M; Wang C; Ling L; Batchelor WD; Zhang J; Kuai J PLoS One; 2021; 16(11):e0259929. PubMed ID: 34793545 [TBL] [Abstract][Full Text] [Related]
7. Estimation of plant protection product application dates for environmental fate modeling based on phenological stages of crops. Gericke D; Nekovar J; Horold C J Environ Sci Health B; 2010 Oct; 45(7):639-47. PubMed ID: 20845180 [TBL] [Abstract][Full Text] [Related]
8. Improving the estimation of rice above-ground biomass based on spatio-temporal UAV imagery and phenological stages. Dai Y; Yu S; Ma T; Ding J; Chen K; Zeng G; Xie A; He P; Peng S; Zhang M Front Plant Sci; 2024; 15():1328834. PubMed ID: 38774220 [TBL] [Abstract][Full Text] [Related]
9. Changes in bacterial communities induced by integrated production systems and the phenological stages of soybean. Dos Santos JAF; do Nascimento AF; Rempel DM; Ferreira A Sci Total Environ; 2024 Feb; 912():168626. PubMed ID: 38013096 [TBL] [Abstract][Full Text] [Related]
10. Application of machine learning and genetic optimization algorithms for modeling and optimizing soybean yield using its component traits. Yoosefzadeh-Najafabadi M; Tulpan D; Eskandari M PLoS One; 2021; 16(4):e0250665. PubMed ID: 33930039 [TBL] [Abstract][Full Text] [Related]
11. Estimation of maize evapotraspiration under drought stress - A case study of Huaibei Plain, China. Yuan H; Cui Y; Ning S; Jiang S; Yuan X; Tang G PLoS One; 2019; 14(11):e0223756. PubMed ID: 31689311 [TBL] [Abstract][Full Text] [Related]
12. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894 [TBL] [Abstract][Full Text] [Related]
13. Prediction of Crop Yield Using Phenological Information Extracted from Remote Sensing Vegetation Index. Ji Z; Pan Y; Zhu X; Wang J; Li Q Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671356 [TBL] [Abstract][Full Text] [Related]
14. Evaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of Din M; Zheng W; Rashid M; Wang S; Shi Z Front Plant Sci; 2017; 8():820. PubMed ID: 28588596 [TBL] [Abstract][Full Text] [Related]
15. Digital Mapping of Soil Salinity and Crop Yield across a Coastal Agricultural Landscape Using Repeated Electromagnetic Induction (EMI) Surveys. Yao R; Yang J; Wu D; Xie W; Gao P; Jin W PLoS One; 2016; 11(5):e0153377. PubMed ID: 27203697 [TBL] [Abstract][Full Text] [Related]
16. Improving the matching degree between remotely sensed phenological dates and physiological growing stages of soybean by a dynamic offset-adjustment strategy. Chen S; Yi Q; Wang F; Zheng J; Li J Sci Total Environ; 2024 Jan; 906():167783. PubMed ID: 37839478 [TBL] [Abstract][Full Text] [Related]
17. Phenological Model to Predict Budbreak and Flowering Dates of Four Piña-Rey A; Ribeiro H; Fernández-González M; Abreu I; Rodríguez-Rajo FJ Plants (Basel); 2021 Mar; 10(3):. PubMed ID: 33800369 [TBL] [Abstract][Full Text] [Related]
18. Automatic Localization of Soybean Seedlings Based on Crop Signaling and Multi-View Imaging. Jiang B; Zhang HY; Su WH Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793920 [TBL] [Abstract][Full Text] [Related]
19. Genetic Relationships Among Physiological Processes, Phenology, and Grain Yield Offer an Insight Into the Development of New Cultivars in Soybean ( Lopez MA; Freitas Moreira F; Rainey KM Front Plant Sci; 2021; 12():651241. PubMed ID: 33903802 [TBL] [Abstract][Full Text] [Related]
20. Maize/soybean intercropping increases nutrient uptake, crop yield and modifies soil physio-chemical characteristics and enzymatic activities in the subtropical humid region based in Southwest China. Nasar J; Ahmad M; Gitari H; Tang L; Chen Y; Zhou XB BMC Plant Biol; 2024 May; 24(1):434. PubMed ID: 38773357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]