These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38870285)

  • 1. Probing structural superlubricity of two-dimensional water transport with atomic resolution.
    Wu D; Zhao Z; Lin B; Song Y; Qi J; Jiang J; Yuan Z; Cheng B; Zhao M; Tian Y; Wang Z; Wu M; Bian K; Liu KH; Xu LM; Zeng XC; Wang EG; Jiang Y
    Science; 2024 Jun; 384(6701):1254-1259. PubMed ID: 38870285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized Scaling Law of Structural Superlubricity.
    Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M
    Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sliding friction of graphene/hexagonal -boron nitride heterojunctions: a route to robust superlubricity.
    Mandelli D; Leven I; Hod O; Urbakh M
    Sci Rep; 2017 Sep; 7(1):10851. PubMed ID: 28883489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating Water Slip Using Atomic-Scale Defects: Friction on Realistic Hexagonal Boron Nitride Surfaces.
    Seal A; Govind Rajan A
    Nano Lett; 2021 Oct; 21(19):8008-8016. PubMed ID: 34606287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlayer Friction and Superlubricity in Single-Crystalline Contact Enabled by Two-Dimensional Flake-Wrapped Atomic Force Microscope Tips.
    Liu Y; Song A; Xu Z; Zong R; Zhang J; Yang W; Wang R; Hu Y; Luo J; Ma T
    ACS Nano; 2018 Aug; 12(8):7638-7646. PubMed ID: 30060665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures.
    Tocci G; Joly L; Michaelides A
    Nano Lett; 2014 Dec; 14(12):6872-7. PubMed ID: 25394228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere.
    Liu SW; Wang HP; Xu Q; Ma TB; Yu G; Zhang C; Geng D; Yu Z; Zhang S; Wang W; Hu YZ; Wang H; Luo J
    Nat Commun; 2017 Feb; 8():14029. PubMed ID: 28195130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Origin of Superlubricity between Graphene and a Highly Hydrophobic Surface in Water.
    Li J; Cao W; Li J; Ma M; Luo J
    J Phys Chem Lett; 2019 Jun; 10(11):2978-2984. PubMed ID: 31094522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions.
    Song Y; Mandelli D; Hod O; Urbakh M; Ma M; Zheng Q
    Nat Mater; 2018 Oct; 17(10):894-899. PubMed ID: 30061730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tribo-Induced Interfacial Material Transfer of an Atomic Force Microscopy Probe Assisting Superlubricity in a WS
    Tian J; Yin X; Li J; Qi W; Huang P; Chen X; Luo J
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4031-4040. PubMed ID: 31889443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. van der Waals Epitaxy, Superlubricity, and Polarization of the 2D Ferroelectric SnS.
    Moody MJ; Paul JT; Smeets PJM; Dos Reis R; Kim JS; Mead CE; Gish JT; Hersam MC; Chan MKY; Lauhon LJ
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56150-56157. PubMed ID: 38011316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomistic Mechanism of Friction-Force Independence on the Normal Load and Other Friction Laws for Dynamic Structural Superlubricity.
    Brilliantov NV; Tsukanov AA; Grebenko AK; Nasibulin AG; Ostanin IA
    Phys Rev Lett; 2023 Dec; 131(26):266201. PubMed ID: 38215361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Good Are the Performances of Graphene and Boron Nitride Against the Wear of Copper?
    Kang MC; Park HW; Caron A
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33671043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical modeling of structural superlubricity in rotated bilayer graphene, hexagonal boron nitride, molybdenum disulfide, and blue phosphorene.
    Kabengele T; Johnson ER
    Nanoscale; 2021 Sep; 13(34):14399-14407. PubMed ID: 34473160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice relaxation at the interface of two-dimensional crystals: graphene and hexagonal boron-nitride.
    Lu J; Gomes LC; Nunes RW; Castro Neto AH; Loh KP
    Nano Lett; 2014 Sep; 14(9):5133-9. PubMed ID: 25083603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Friction force microscopy: a simple technique for identifying graphene on rough substrates and mapping the orientation of graphene grains on copper.
    Marsden AJ; Phillips M; Wilson NR
    Nanotechnology; 2013 Jun; 24(25):255704. PubMed ID: 23723186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformation Coupled Moiré Mapping of Superlubricity in Graphene.
    Bai H; Zou G; Bao H; Li S; Ma F; Gao H
    ACS Nano; 2023 Jul; 17(13):12594-12602. PubMed ID: 37338168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers.
    Gong Y; Shi G; Zhang Z; Zhou W; Jung J; Gao W; Ma L; Yang Y; Yang S; You G; Vajtai R; Xu Q; MacDonald AH; Yakobson BI; Lou J; Liu Z; Ajayan PM
    Nat Commun; 2014; 5():3193. PubMed ID: 24458370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecules on rails: friction anisotropy and preferential sliding directions of organic nanocrystallites on two-dimensional materials.
    Vasić B; Stanković I; Matković A; Kratzer M; Ganser C; Gajić R; Teichert C
    Nanoscale; 2018 Oct; 10(39):18835-18845. PubMed ID: 30277249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorination to enhance superlubricity performance between self-assembled monolayer and graphite in water.
    Li J; Cao W; Li J; Ma M
    J Colloid Interface Sci; 2021 Aug; 596():44-53. PubMed ID: 33826969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.