These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38870306)

  • 1. Spectrally engineered textile for radiative cooling against urban heat islands.
    Wu R; Sui C; Chen TH; Zhou Z; Li Q; Yan G; Han Y; Liang J; Hung PJ; Luo E; Talapin DV; Hsu PC
    Science; 2024 Jun; 384(6701):1203-1212. PubMed ID: 38870306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling.
    Zhang J; Zhou Z; Tang H; Xing J; Quan J; Liu J; Yu J; Hu M
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14132-14140. PubMed ID: 33724770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling.
    Chae D; Lim H; So S; Son S; Ju S; Kim W; Rho J; Lee H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21119-21126. PubMed ID: 33926186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiative Cooling Nanofabric for Personal Thermal Management.
    Iqbal MI; Lin K; Sun F; Chen S; Pan A; Lee HH; Kan CW; Lin CSK; Tso CY
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35562190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Sunlight Reflective and Infrared Semi-Transparent Nanomesh Textiles.
    Kim G; Park K; Hwang KJ; Jin S
    ACS Nano; 2021 Oct; 15(10):15962-15971. PubMed ID: 34661392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling.
    Cai L; Song AY; Li W; Hsu PC; Lin D; Catrysse PB; Liu Y; Peng Y; Chen J; Wang H; Xu J; Yang A; Fan S; Cui Y
    Adv Mater; 2018 Aug; 30(35):e1802152. PubMed ID: 30015999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Janus Textile Capable of Radiative Subambient Cooling and Warming for Multi-Scenario Personal Thermal Management.
    Li K; Li M; Lin C; Liu G; Li Y; Huang B
    Small; 2023 May; 19(19):e2206149. PubMed ID: 36807770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Radiative Cooling Textiles Based on Composite Nanoporous Fibers for Personal Thermal Management.
    Li M; Yan Z; Fan D
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):17848-17857. PubMed ID: 36977290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of Janus Wettability and Heat Conduction in Hierarchically Designed Textiles for All-Day Personal Radiative Cooling.
    Miao D; Cheng N; Wang X; Yu J; Ding B
    Nano Lett; 2022 Jan; 22(2):680-687. PubMed ID: 34994570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling.
    Chae D; Kim M; Jung PH; Son S; Seo J; Liu Y; Lee BJ; Lee H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8073-8081. PubMed ID: 31990166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual-mode textile for human body radiative heating and cooling.
    Hsu PC; Liu C; Song AY; Zhang Z; Peng Y; Xie J; Liu K; Wu CL; Catrysse PB; Cai L; Zhai S; Majumdar A; Fan S; Cui Y
    Sci Adv; 2017 Nov; 3(11):e1700895. PubMed ID: 29296678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling.
    Zeng S; Pian S; Su M; Wang Z; Wu M; Liu X; Chen M; Xiang Y; Wu J; Zhang M; Cen Q; Tang Y; Zhou X; Huang Z; Wang R; Tunuhe A; Sun X; Xia Z; Tian M; Chen M; Ma X; Yang L; Zhou J; Zhou H; Yang Q; Li X; Ma Y; Tao G
    Science; 2021 Aug; 373(6555):692-696. PubMed ID: 34353954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daytime Radiative Cooling Coating Based on the Y
    Du T; Niu J; Wang L; Bai J; Wang S; Li S; Fan Y
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51351-51360. PubMed ID: 36332077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subambient daytime radiative cooling textile based on nanoprocessed silk.
    Zhu B; Li W; Zhang Q; Li D; Liu X; Wang Y; Xu N; Wu Z; Li J; Li X; Catrysse PB; Xu W; Fan S; Zhu J
    Nat Nanotechnol; 2021 Dec; 16(12):1342-1348. PubMed ID: 34750560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Thin Polymer Coating as a Selective Thermal Emitter for Passive Daytime Radiative Cooling.
    Banik U; Agrawal A; Meddeb H; Sergeev O; Reininghaus N; Götz-Köhler M; Gehrke K; Stührenberg J; Vehse M; Sznajder M; Agert C
    ACS Appl Mater Interfaces; 2021 May; 13(20):24130-24137. PubMed ID: 33974398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal inorganic nano- and microparticles for passive daytime radiative cooling.
    Woo HY; Choi Y; Chung H; Lee DW; Paik T
    Nano Converg; 2023 Apr; 10(1):17. PubMed ID: 37071232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Moisture-Wicking Passive Radiative Cooling Hierarchical Metafabric.
    Zhang X; Yang W; Shao Z; Li Y; Su Y; Zhang Q; Hou C; Wang H
    ACS Nano; 2022 Feb; 16(2):2188-2197. PubMed ID: 35075910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ordered-Porous-Array Polymethyl Methacrylate Films for Radiative Cooling.
    Qi G; Tan X; Tu Y; Yang X; Qiao Y; Wang Y; Geng J; Yao S; Chen X
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31277-31284. PubMed ID: 35771521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.