These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38870559)

  • 1. STPDA: Leveraging spatial-temporal patterns for downstream analysis in spatial transcriptomic data.
    Shi M; Cheng X; Dai Y
    Comput Biol Chem; 2024 Oct; 112():108127. PubMed ID: 38870559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational solutions for spatial transcriptomics.
    Kleino I; FrolovaitÄ— P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of Inferring Spatial Transcriptomics from Single-Cell Histological Patterns for Studying Colon Cancer Tumor Heterogeneity.
    Fatemi MY; Lu Y; Sharma C; Feng E; Azher ZL; Diallo AB; Srinivasan G; Rosner GM; Pointer KB; Christensen BC; Salas LA; Tsongalis GJ; Palisoul SM; Perreard L; Kolling FW; Vaickus LJ; Levy JJ
    medRxiv; 2023 Oct; ():. PubMed ID: 37873186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPADE: spatial deconvolution for domain specific cell-type estimation.
    Lu Y; Chen QM; An L
    Commun Biol; 2024 Apr; 7(1):469. PubMed ID: 38632414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging cell-cell similarity for high-performance spatial and temporal cellular mappings from gene expression data.
    Islam MT; Xing L
    Patterns (N Y); 2023 Oct; 4(10):100840. PubMed ID: 37876896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal prediction of secondary crashes combining stacked sparse auto-encoder and long short-term memory.
    Li H; Gao Q; Zhang Z; Zhang Y; Ren G
    Accid Anal Prev; 2023 Oct; 191():107205. PubMed ID: 37413700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging Roles of Spatial Transcriptomics in Liver Research.
    Fujiwara N; Kimura G; Nakagawa H
    Semin Liver Dis; 2024 May; 44(2):115-132. PubMed ID: 38574750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational exploration of cellular communication in skin from emerging single-cell and spatial transcriptomic data.
    Jin S; Ramos R
    Biochem Soc Trans; 2022 Feb; 50(1):297-308. PubMed ID: 35191953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A practical guide to spatial transcriptomics.
    Valihrach L; Zucha D; Abaffy P; Kubista M
    Mol Aspects Med; 2024 Jun; 97():101276. PubMed ID: 38776574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data.
    Shan X; Chen J; Dong K; Zhou W; Zhang S
    J Comput Biol; 2022 Jul; 29(7):650-663. PubMed ID: 35727094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles of Spatial Transcriptomics Analysis: A Practical Walk-Through in Kidney Tissue.
    Noel T; Wang QS; Greka A; Marshall JL
    Front Physiol; 2021; 12():809346. PubMed ID: 35069263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-view graph contrastive learning framework for deciphering spatially resolved transcriptomics data.
    Zhang L; Liang S; Wan L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38801701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in spatial transcriptomic data analysis.
    Dries R; Chen J; Del Rossi N; Khan MM; Sistig A; Yuan GC
    Genome Res; 2021 Oct; 31(10):1706-1718. PubMed ID: 34599004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive survey of dimensionality reduction and clustering methods for single-cell and spatial transcriptomics data.
    Sun Y; Kong L; Huang J; Deng H; Bian X; Li X; Cui F; Dou L; Cao C; Zou Q; Zhang Z
    Brief Funct Genomics; 2024 Jun; ():. PubMed ID: 38860675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting mammalian reproduction with spatial transcriptomics.
    Zhang X; Cao Q; Rajachandran S; Grow EJ; Evans M; Chen H
    Hum Reprod Update; 2023 Nov; 29(6):794-810. PubMed ID: 37353907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Overlooked Role of Specimen Preparation in Bolstering Deep Learning-Enhanced Spatial Transcriptomics Workflows.
    Fatemi MY; Lu Y; Diallo AB; Srinivasan G; Azher ZL; Christensen BC; Salas LA; Tsongalis GJ; Palisoul SM; Perreard L; Kolling FW; Vaickus LJ; Levy JJ
    medRxiv; 2023 Oct; ():. PubMed ID: 37873287
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.