These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38870680)

  • 1. Arsenic-induced plant stress: Mitigation strategies and omics approaches to alleviate toxicity.
    Zaidi S; Hayat S; Pichtel J
    Plant Physiol Biochem; 2024 Aug; 213():108811. PubMed ID: 38870680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects.
    Abbas G; Murtaza B; Bibi I; Shahid M; Niazi NK; Khan MI; Amjad M; Hussain M;
    Int J Environ Res Public Health; 2018 Jan; 15(1):. PubMed ID: 29301332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead uptake, toxicity, and detoxification in plants.
    Pourrut B; Shahid M; Dumat C; Winterton P; Pinelli E
    Rev Environ Contam Toxicol; 2011; 213():113-36. PubMed ID: 21541849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation.
    Kofroňová M; Mašková P; Lipavská H
    Planta; 2018 Jul; 248(1):19-35. PubMed ID: 29736625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies?
    Zabłudowska E; Kowalska J; Jedynak L; Wojas S; Skłodowska A; Antosiewicz DM
    Chemosphere; 2009 Oct; 77(3):301-7. PubMed ID: 19733893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice (Oryza sativa L.).
    Verma G; Srivastava D; Narayan S; Shirke PA; Chakrabarty D
    Ecotoxicol Environ Saf; 2020 Sep; 201():110735. PubMed ID: 32480163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of different phosphorus sources on soybean growth and arsenic uptake under arsenic stress conditions in an acidic ultisol.
    Kamran MA; Xu RK; Li JY; Jiang J; Nkoh JN
    Ecotoxicol Environ Saf; 2018 Dec; 165():11-18. PubMed ID: 30173021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review.
    Shahid M; Shamshad S; Rafiq M; Khalid S; Bibi I; Niazi NK; Dumat C; Rashid MI
    Chemosphere; 2017 Jul; 178():513-533. PubMed ID: 28347915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance.
    Arif Y; Singh P; Siddiqui H; Bajguz A; Hayat S
    Plant Physiol Biochem; 2020 Nov; 156():64-77. PubMed ID: 32906023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological impacts of soil pollution and arsenic uptake in three plant species: Agrostis capillaris, Solanum nigrum and Vicia faba.
    Austruy A; Wanat N; Moussard C; Vernay P; Joussein E; Ledoigt G; Hitmi A
    Ecotoxicol Environ Saf; 2013 Apr; 90():28-34. PubMed ID: 23321366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive review of adaptations in plants under arsenic toxicity: Physiological, metabolic and molecular interventions.
    Nabi A; Naeem M; Aftab T; Khan MMA; Ahmad P
    Environ Pollut; 2021 Dec; 290():118029. PubMed ID: 34474375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic-induced oxidative stress in Brassica oleracea: Multivariate and literature data analyses of physiological parameters, applied levels and plant organ type.
    Natasha ; Shahid M; Khalid S; Bibi I; Khalid S; Masood N; Qaisrani SA; Niazi NK; Dumat C
    Environ Geochem Health; 2022 Jun; 44(6):1827-1839. PubMed ID: 34524606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic acquisition, toxicity and tolerance in plants - From physiology to remediation: A review.
    Bali AS; Sidhu GPS
    Chemosphere; 2021 Nov; 283():131050. PubMed ID: 34147983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of biochar and humic acid improves the physiological and biochemical processes of rice (Oryza sativa L.) in conferring plant tolerance to arsenic-induced oxidative stress.
    Hasanuzzaman M; Nowroz F; Raihan MRH; Siddika A; Alam MM; Prasad PVV
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):1562-1575. PubMed ID: 38047999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agroecotoxicological Aspect of Cd in Soil-Plant System: Uptake, Translocation and Amelioration Strategies.
    Khanna K; Kohli SK; Ohri P; Bhardwaj R; Ahmad P
    Environ Sci Pollut Res Int; 2022 May; 29(21):30908-30934. PubMed ID: 35094262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological, biochemical and transcriptomic insights into the mechanisms by which molybdenum mitigates cadmium toxicity in Triticum aestivum L.
    Wu M; Xu J; Nie Z; Shi H; Liu H; Zhang Y; Li C; Zhao P; Liu H
    J Hazard Mater; 2024 Jul; 472():134516. PubMed ID: 38714056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms to cope with arsenic or cadmium excess in plants.
    Verbruggen N; Hermans C; Schat H
    Curr Opin Plant Biol; 2009 Jun; 12(3):364-72. PubMed ID: 19501016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.