These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38871012)

  • 1. Improving biomedical Named Entity Recognition with additional external contexts.
    Tho BD; Nguyen MT; Le DT; Ying LL; Inoue S; Nguyen TT
    J Biomed Inform; 2024 Aug; 156():104674. PubMed ID: 38871012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From zero to hero: Harnessing transformers for biomedical named entity recognition in zero- and few-shot contexts.
    Košprdić M; Prodanović N; Ljajić A; Bašaragin B; Milošević N
    Artif Intell Med; 2024 Oct; 156():102970. PubMed ID: 39197375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Medical Entity Recognition in Health Care: Entity Model Quantitative Study.
    Liu S; Wang A; Xiu X; Zhong M; Wu S
    JMIR Med Inform; 2024 Oct; 12():e59782. PubMed ID: 39419501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BioBBC: a multi-feature model that enhances the detection of biomedical entities.
    Alamro H; Gojobori T; Essack M; Gao X
    Sci Rep; 2024 Apr; 14(1):7697. PubMed ID: 38565624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and effective biomedical named entity recognition using temporal convolutional network with conditional random field.
    Sun GX; Zhou CJ; Zhao HY; Jin B; Gao Z
    Math Biosci Eng; 2020 May; 17(4):3553-3566. PubMed ID: 32987543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective type label-based synergistic representation learning for biomedical event trigger detection.
    Hao A; Yuan H; Hui SC; Su J
    BMC Bioinformatics; 2024 Jul; 25(1):251. PubMed ID: 39085787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomedical named entity recognition using deep neural networks with contextual information.
    Cho H; Lee H
    BMC Bioinformatics; 2019 Dec; 20(1):735. PubMed ID: 31881938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADPG: Biomedical entity recognition based on Automatic Dependency Parsing Graph.
    Yang Y; Lin H; Yang Z; Zhang Y; Zhao D; Huai S
    J Biomed Inform; 2023 Apr; 140():104317. PubMed ID: 36804374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-head CRF classifier for biomedical multi-class named entity recognition on Spanish clinical notes.
    Jonker RAA; Almeida T; Antunes R; Almeida JR; Matos S
    Database (Oxford); 2024 Jul; 2024():. PubMed ID: 39083461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features.
    Tang B; Cao H; Wu Y; Jiang M; Xu H
    BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S1. PubMed ID: 23566040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Language model based on deep learning network for biomedical named entity recognition.
    Hou G; Jian Y; Zhao Q; Quan X; Zhang H
    Methods; 2024 Jun; 226():71-77. PubMed ID: 38641084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on named entity recognition of adverse drug reactions based on NLP and deep learning.
    Wei J; Hu T; Dai J; Wang Z; Han P; Huang W
    Front Pharmacol; 2023; 14():1121796. PubMed ID: 37332351
    [No Abstract]   [Full Text] [Related]  

  • 13. Combining word embeddings to extract chemical and drug entities in biomedical literature.
    López-Úbeda P; Díaz-Galiano MC; Ureña-López LA; Martín-Valdivia MT
    BMC Bioinformatics; 2021 Dec; 22(Suppl 1):599. PubMed ID: 34920708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MMBERT: a unified framework for biomedical named entity recognition.
    Fu L; Weng Z; Zhang J; Xie H; Cao Y
    Med Biol Eng Comput; 2024 Jan; 62(1):327-341. PubMed ID: 37833517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records.
    Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X
    BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sample Size Considerations for Fine-Tuning Large Language Models for Named Entity Recognition Tasks: Methodological Study.
    Majdik ZP; Graham SS; Shiva Edward JC; Rodriguez SN; Karnes MS; Jensen JT; Barbour JB; Rousseau JF
    JMIR AI; 2024 May; 3():e52095. PubMed ID: 38875593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating Language Model and Reading Control Gate in BLSTM-CRF for Biomedical Named Entity Recognition.
    Li L; Jiang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):841-846. PubMed ID: 30183643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negation-based transfer learning for improving biomedical Named Entity Recognition and Relation Extraction.
    Fabregat H; Duque A; Martinez-Romo J; Araujo L
    J Biomed Inform; 2023 Feb; 138():104279. PubMed ID: 36610608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DTranNER: biomedical named entity recognition with deep learning-based label-label transition model.
    Hong SK; Lee JG
    BMC Bioinformatics; 2020 Feb; 21(1):53. PubMed ID: 32046638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomedical named entity recognition based on fusion multi-features embedding.
    Li M; Yang H; Liu Y
    Technol Health Care; 2023; 31(S1):111-121. PubMed ID: 37038786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.