These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38871012)

  • 41. Named entity recognition of Chinese electronic medical records based on a hybrid neural network and medical MC-BERT.
    Chen P; Zhang M; Yu X; Li S
    BMC Med Inform Decis Mak; 2022 Dec; 22(1):315. PubMed ID: 36457119
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Feature selection techniques for maximum entropy based biomedical named entity recognition.
    Saha SK; Sarkar S; Mitra P
    J Biomed Inform; 2009 Oct; 42(5):905-11. PubMed ID: 19535010
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A span-based joint model for extracting entities and relations of bacteria biotopes.
    Zuo M; Zhang Y
    Bioinformatics; 2021 Dec; 38(1):220-227. PubMed ID: 34398194
    [TBL] [Abstract][Full Text] [Related]  

  • 44. BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale.
    Chen Q; Lee K; Yan S; Kim S; Wei CH; Lu Z
    PLoS Comput Biol; 2020 Apr; 16(4):e1007617. PubMed ID: 32324731
    [TBL] [Abstract][Full Text] [Related]  

  • 45. D3NER: biomedical named entity recognition using CRF-biLSTM improved with fine-tuned embeddings of various linguistic information.
    Dang TH; Le HQ; Nguyen TM; Vu ST
    Bioinformatics; 2018 Oct; 34(20):3539-3546. PubMed ID: 29718118
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ensemble pretrained language models to extract biomedical knowledge from literature.
    Li Z; Wei Q; Huang LC; Li J; Hu Y; Chuang YS; He J; Das A; Keloth VK; Yang Y; Diala CS; Roberts KE; Tao C; Jiang X; Zheng WJ; Xu H
    J Am Med Inform Assoc; 2024 Sep; 31(9):1904-1911. PubMed ID: 38520725
    [TBL] [Abstract][Full Text] [Related]  

  • 48. S-NER: A Concise and Efficient Span-Based Model for Named Entity Recognition.
    Yu J; Ji B; Li S; Ma J; Liu H; Xu H
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458837
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Drug knowledge discovery via multi-task learning and pre-trained models.
    Li D; Xiong Y; Hu B; Tang B; Peng W; Chen Q
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 9):251. PubMed ID: 34789238
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integrating deep learning architectures for enhanced biomedical relation extraction: a pipeline approach.
    Sarol MJ; Hong G; Guerra E; Kilicoglu H
    Database (Oxford); 2024 Aug; 2024():. PubMed ID: 39197056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiple Embeddings Enhanced Multi-Graph Neural Networks for Chinese Healthcare Named Entity Recognition.
    Lee LH; Lu Y
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2801-2810. PubMed ID: 33385314
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A neural network multi-task learning approach to biomedical named entity recognition.
    Crichton G; Pyysalo S; Chiu B; Korhonen A
    BMC Bioinformatics; 2017 Aug; 18(1):368. PubMed ID: 28810903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CollaboNet: collaboration of deep neural networks for biomedical named entity recognition.
    Yoon W; So CH; Lee J; Kang J
    BMC Bioinformatics; 2019 May; 20(Suppl 10):249. PubMed ID: 31138109
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A hybrid approach for named entity recognition in Chinese electronic medical record.
    Ji B; Liu R; Li S; Yu J; Wu Q; Tan Y; Wu J
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):64. PubMed ID: 30961597
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SBLC: a hybrid model for disease named entity recognition based on semantic bidirectional LSTMs and conditional random fields.
    Xu K; Zhou Z; Gong T; Hao T; Liu W
    BMC Med Inform Decis Mak; 2018 Dec; 18(Suppl 5):114. PubMed ID: 30526592
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Advancing entity recognition in biomedicine via instruction tuning of large language models.
    Keloth VK; Hu Y; Xie Q; Peng X; Wang Y; Zheng A; Selek M; Raja K; Wei CH; Jin Q; Lu Z; Chen Q; Xu H
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38514400
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Context-Aware Attentive Multilevel Feature Fusion for Named Entity Recognition.
    Yang Z; Ma J; Chen H; Zhang J; Chang Y
    IEEE Trans Neural Netw Learn Syst; 2022 Jun; PP():. PubMed ID: 35675246
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Fine-Tuned Bidirectional Encoder Representations From Transformers Model for Food Named-Entity Recognition: Algorithm Development and Validation.
    Stojanov R; Popovski G; Cenikj G; Koroušić Seljak B; Eftimov T
    J Med Internet Res; 2021 Aug; 23(8):e28229. PubMed ID: 34383671
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparative study of pre-trained language models for named entity recognition in clinical trial eligibility criteria from multiple corpora.
    Li J; Wei Q; Ghiasvand O; Chen M; Lobanov V; Weng C; Xu H
    BMC Med Inform Decis Mak; 2022 Sep; 22(Suppl 3):235. PubMed ID: 36068551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.