These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38871058)
1. Prediction of Epidermal Growth Factor Receptor Mutation Subtypes in Non-Small Cell Lung Cancer From Hematoxylin and Eosin-Stained Slides Using Deep Learning. Zhang W; Wang W; Xu Y; Wu K; Shi J; Li M; Feng Z; Liu Y; Zheng Y; Wu H Lab Invest; 2024 Aug; 104(8):102094. PubMed ID: 38871058 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images. Sadhwani A; Chang HW; Behrooz A; Brown T; Auvigne-Flament I; Patel H; Findlater R; Velez V; Tan F; Tekiela K; Wulczyn E; Yi ES; Mermel CH; Hanks D; Chen PC; Kulig K; Batenchuk C; Steiner DF; Cimermancic P Sci Rep; 2021 Aug; 11(1):16605. PubMed ID: 34400666 [TBL] [Abstract][Full Text] [Related]
3. High accuracy epidermal growth factor receptor mutation prediction via histopathological deep learning. Zhao D; Zhao Y; He S; Liu Z; Li K; Zhang L; Zhang X; Wang S; Che N; Jin M BMC Pulm Med; 2023 Jul; 23(1):244. PubMed ID: 37407963 [TBL] [Abstract][Full Text] [Related]
4. [Prediction of gene mutation in lung cancer based on deep learning and histomorphology analysis]. Wang Q; Shen Q; Zhang Z; Cai C; Lu H; Zhou X; Xu J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):10-18. PubMed ID: 32096372 [TBL] [Abstract][Full Text] [Related]
5. Direct identification of ALK and ROS1 fusions in non-small cell lung cancer from hematoxylin and eosin-stained slides using deep learning algorithms. Mayer C; Ofek E; Fridrich DE; Molchanov Y; Yacobi R; Gazy I; Hayun I; Zalach J; Paz-Yaacov N; Barshack I Mod Pathol; 2022 Dec; 35(12):1882-1887. PubMed ID: 36057739 [TBL] [Abstract][Full Text] [Related]
6. A deep learning model integrating multisequence MRI to predict EGFR mutation subtype in brain metastases from non-small cell lung cancer. Li Y; Lv X; Chen C; Yu R; Wang B; Wang D; Hou D Eur Radiol Exp; 2024 Jan; 8(1):2. PubMed ID: 38169047 [TBL] [Abstract][Full Text] [Related]
7. Deep learning-based tumor microenvironment segmentation is predictive of tumor mutations and patient survival in non-small-cell lung cancer. Rączkowska A; Paśnik I; Kukiełka M; Nicoś M; Budzinska MA; Kucharczyk T; Szumiło J; Krawczyk P; Crosetto N; Szczurek E BMC Cancer; 2022 Sep; 22(1):1001. PubMed ID: 36131239 [TBL] [Abstract][Full Text] [Related]
8. Predicting Lymph Node Metastasis From Primary Cervical Squamous Cell Carcinoma Based on Deep Learning in Histopathologic Images. Guo Q; Qu L; Zhu J; Li H; Wu Y; Wang S; Yu M; Wu J; Wen H; Ju X; Wang X; Bi R; Shi Y; Wu X Mod Pathol; 2023 Dec; 36(12):100316. PubMed ID: 37634868 [TBL] [Abstract][Full Text] [Related]
9. Deep learning-radiomics integrated noninvasive detection of epidermal growth factor receptor mutations in non-small cell lung cancer patients. Kim S; Lim JH; Kim CH; Roh J; You S; Choi JS; Lim JH; Kim L; Chang JW; Park D; Lee MW; Kim S; Heo J Sci Rep; 2024 Jan; 14(1):922. PubMed ID: 38195717 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning for Predicting Effect of Neoadjuvant Therapies in Non-Small Cell Lung Carcinomas With Histologic Images. Terada K; Yoshizawa A; Liu X; Ito H; Hamaji M; Menju T; Date H; Bise R; Haga H Mod Pathol; 2023 Nov; 36(11):100302. PubMed ID: 37580019 [TBL] [Abstract][Full Text] [Related]
11. Hybrid deep multi-task learning radiomics approach for predicting EGFR mutation status of non-small cell lung cancer in CT images. Gong J; Fu F; Ma X; Wang T; Ma X; You C; Zhang Y; Peng W; Chen H; Gu Y Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37972417 [No Abstract] [Full Text] [Related]
12. Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer. Song JH; Hong Y; Kim ER; Kim SH; Sohn I J Gastroenterol; 2022 Sep; 57(9):654-666. PubMed ID: 35802259 [TBL] [Abstract][Full Text] [Related]
13. Deep-Learning to Predict BRCA Mutation and Survival from Digital H&E Slides of Epithelial Ovarian Cancer. Nero C; Boldrini L; Lenkowicz J; Giudice MT; Piermattei A; Inzani F; Pasciuto T; Minucci A; Fagotti A; Zannoni G; Valentini V; Scambia G Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232628 [TBL] [Abstract][Full Text] [Related]
14. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts. Fremond S; Andani S; Barkey Wolf J; Dijkstra J; Melsbach S; Jobsen JJ; Brinkhuis M; Roothaan S; Jurgenliemk-Schulz I; Lutgens LCHW; Nout RA; van der Steen-Banasik EM; de Boer SM; Powell ME; Singh N; Mileshkin LR; Mackay HJ; Leary A; Nijman HW; Smit VTHBM; Creutzberg CL; Horeweg N; Koelzer VH; Bosse T Lancet Digit Health; 2023 Feb; 5(2):e71-e82. PubMed ID: 36496303 [TBL] [Abstract][Full Text] [Related]
15. Piloting a Deep Learning Model for Predicting Nuclear BAP1 Immunohistochemical Expression of Uveal Melanoma from Hematoxylin-and-Eosin Sections. Zhang H; Kalirai H; Acha-Sagredo A; Yang X; Zheng Y; Coupland SE Transl Vis Sci Technol; 2020 Sep; 9(2):50. PubMed ID: 32953248 [TBL] [Abstract][Full Text] [Related]
16. Deep learning-based analysis of EGFR mutation prevalence in lung adenocarcinoma H&E whole slide images. Park JH; Lim JH; Kim S; Kim CH; Choi JS; Lim JH; Kim L; Chang JW; Park D; Lee MW; Kim S; Park IS; Han SH; Shin E; Roh J; Heo J J Pathol Clin Res; 2024 Nov; 10(6):e70004. PubMed ID: 39358807 [TBL] [Abstract][Full Text] [Related]
17. Habitat radiomics and deep learning fusion nomogram to predict EGFR mutation status in stage I non-small cell lung cancer: a multicenter study. Wu J; Meng H; Zhou L; Wang M; Jin S; Ji H; Liu B; Jin P; Du C Sci Rep; 2024 Jul; 14(1):15877. PubMed ID: 38982267 [TBL] [Abstract][Full Text] [Related]
18. Assessment of EGFR and KRAS mutation status from FNAs and core-needle biopsies of non-small cell lung cancer. Lozano MD; Labiano T; Echeveste J; Gurpide A; Martín-Algarra S; Zhang G; Sharma A; Palma JF Cancer Cytopathol; 2015 Apr; 123(4):230-6. PubMed ID: 25529460 [TBL] [Abstract][Full Text] [Related]
19. Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer: a multicohort study. Wang S; Yu H; Gan Y; Wu Z; Li E; Li X; Cao J; Zhu Y; Wang L; Deng H; Xie M; Wang Y; Ma X; Liu D; Chen B; Tian P; Qiu Z; Xian J; Ren J; Wang K; Wei W; Xie F; Li Z; Wang Q; Xue X; Liu Z; Shi J; Li W; Tian J Lancet Digit Health; 2022 May; 4(5):e309-e319. PubMed ID: 35341713 [TBL] [Abstract][Full Text] [Related]
20. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis. Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]